gooポイントが当たる質問投稿キャンペーン>>

直線の方程式は
y=ax+bで
aは傾き、bはy軸との切片というのはわかるのですが

平面方程式の
z=ax+by+c
のa,b,cは何を表しているのでしょうか?
ご存知の方教えていただけないでしょうか?

A 回答 (3件)

a:X軸方向の傾き


b:Y軸方向の傾き
c:Z切片

この式の場合平らな板状のものが空間に浮いていると考えられます
その板をX軸方向を基準に見たときの傾き(グラフ的には左から右)の傾きがaで、
Y軸を基準に見たときの傾き(グラフ的には手前から奥)の傾きがbです
cはX=Y=0、つまりZ軸上でのグラフの値なのでZ切片です
    • good
    • 0

こんにちは。



#2様のご回答と一部ダブりますが、

XZ平面というのは、方程式で書くと
y=0, x=なんでもいい, z=なんでもいい
です。

あまりいい図が見つからないのですが、こちらの図を見てください。
http://tez.com/blog/archives/000846/takeshi1.JPG
XZ平面は、X軸とZ軸の両方を内部に含む平面です。

XZ平面の上に、z = ax+by+c のグラフを描くと、
y=0 なのですから、
z = ax + c
となり、傾きa、z切片c の直線となります。

同様に、YZ平面上については、z = by + c となり、
傾きb、z切片c の直線となります。

そして、上記の図において三角形のように見える平面を
方程式 z = ax + by + c の平面だと思ってください。

その平面はXZ平面を切断しますが、その切断線の方程式が、z=ax+c です。

同様に、その平面がYZ平面を切断する切断線の方程式が、z=by+c です。

z切片c、すなわち、Z軸上で2つの直線が交わる場所のz座標が、
両者で一致していることは、図からもわかりますよね?


以上、ご参考になりましたら。
    • good
    • 0

z=ax+by+c を ax+by-(z-c)=0 とし


Z=z-c と座標変換して
ax+by+(-1)Z=0 と変形します。。
すると、この式は、ベクトル(x,y,Z)が
ベクトル(a,b,-1) と直交していることを示しています。

つまり、(x,y,Z) はベクトル(a,b,-1)に直交する平面の
式を示しています。

x=0、y=0 の時、Z=0、元の座標で見ると、z=c ですから
この平面は (0,0,c) を通ることが分かります。

x=0 のとき、つまりy-z 平面上では、by+(-1)Z=0 ですから
y-z 平面における勾配は b であり
y=0 のとき、同じようにして ax+(-1)Z=0 より
x-z 平面における勾配が a であることが分かります。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q平面方程式の傾きについて

ax+by+c=zの平面方程式の
傾きというものは存在するものなのですか?

もし存在するのであればどなたか
教えていただけないですか?

Aベストアンサー

こんばんは。

y = ax + b
これの傾きはご存知かと思います。
しかし、「傾き」と言うからには、「何に対しての傾き」かという定義が必要ですよね。
上記の式の傾きは、X軸に対する傾きです。
X軸に対する傾きを角度θを用いて表せば、
Δy = Δx・tanθ
です。(tanθ = a)
そして、xに対するyの傾きも考えることもできます。
それは、当然ながら、1/a です。


さて、
同様に、平面の方程式を考えるときにも、何に対しての傾きを求めるかを決めなければいけません。
それは3通りあります。
・X-Y平面 (平面z=0 に同じ)
・Y-Z平面 (平面x=0 に同じ)
・Z-X平面 (平面y=0 に同じ)

平面と平面との傾きを求めるということは、それらの法線同士の傾きを求めることと同じです。


というわけで、平面の法線の方程式の求め方を学んでください。

Q近似式(z=ax+by+c)を取得したい

エクセルの散布図だとx軸-y軸で散布図を書き、近似式も自動で作成できますが、これを3次(x軸-y軸-z軸)に拡張して、
z=ax+by+c
のような近似式を得たいと考えています。データの特性上、線形(直線)に限定して問題ありません。(x,y,z)のデータは十分揃っています。そのようなツール、もしくは計算式がありましたら教えてください。

よろしくお願いします。

Aベストアンサー

例えば、エクセルで以下のようにデータが入力されているとします。
 (等幅フォントでご覧ください)
     A       B    C      D
----------------------------------------------------
1 |    a      b     c
2 | 0.235982387 -0.057736587 17.62863368 42.53502347
3 |
4 |    x      y     z
5 |   12.87    392.4    2.0    15.92097601
6 |    8.09    254.4    2.1    7.559989098
7 |   12.01     36.0   21.0    6.842069547
8 |   58.94    193.2   20.0    0.1464799
9 |   10.93    255.2    2.0    12.06550891
. |   .....    .....   .....    .....
. |   .....    .....   .....    .....
n |   .....    .....   .....    .....
                (nはデータ数+4)


<入力する値>
A2 = 1.0
B2 = 1.0
C2 = 1.0 (初期値)
A5:Cn 与データ

<入力する数式>
D2 = SUM(D5:Dn)
D5 = (A$2*A5+B$2*B5+C$2-C5)^2
 ( 以下、n行までCopy&Paste )


ここで、ソルバーを起動して、
 目的セル;    $D$2
 目標値;    最小値
 変化させるセル; $A$2:$C$2
として、実行します。
A2:C2が求める係数です。
例示頂いたデータでは、
 Z = 0.235982387X - 0.057736587Y + 17.62863368
と、求まります。
これは、平面の方程式ですがこれでよかったでしょうか?ご確認ください。


簡単に、解説します。
D5:Dnに入力された式が与式 Z=aX+bY+c のそれぞれ具体値結果の2乗です。
2乗してあるところが1つのミソで、その和を求めてそれが最小値になっているとき、
目的の値が求まります。まずは、適当に簡単な問題でご検証ください。
(2乗する以外にも複数の自由度があります)

ソルバーのインストール法に関しては、適当なサイトをご参照ください。

例えば、エクセルで以下のようにデータが入力されているとします。
 (等幅フォントでご覧ください)
     A       B    C      D
----------------------------------------------------
1 |    a      b     c
2 | 0.235982387 -0.057736587 17.62863368 42.53502347
3 |
4 |    x      y     z
5 |   12.87    392.4    2.0    15.92097601
6 |    8.09    254.4    2.1    7.559989098
7 |   12.01   ...続きを読む

Q平面の計算方法

3つ以上の座標点(n個)から最小二乗法を用いて,平面の中心座標,XY・XZ・YZ方向の傾きなどを計算したいのですが,どのように計算したらよろしいでしょうか?

Aベストアンサー

質問者さんが誤差をどの方向に考えているかで変わってくると思います。

全ての点の平面からの距離の二乗和の最小を考えるなら皆さんが回答されている通りだと思います。
ただ、単純な最小2乗法は全ての点から直線までの距離が最小になるよう定めているわけ
ではありません。y方向に誤差を考えていて、その2乗和が最小になるy=a+bxのa,bを
求めています。回帰の説明などを見れば明らかですね。点から直線に伸ばす矢印(誤差の量)は
y軸に平行に書かれています。

http://szksrv.isc.chubu.ac.jp/lms/lms1.html

直線までの距離なら直線に対して垂直に書かなければなりません。
その場合はこの質問同様、もう少し複雑な式になります。

これと同じに考えるなら(つまりz軸方向への誤差の最小を考える)単純な重回帰に
なります。n個のデータ(xi,yi,zi)を使ってz=ax+by+cに回帰するには

aΣxi^2+bΣxiyi+cΣxi=Σxizi
aΣxiyi+bΣyi^2+cΣyi=Σyizi
aΣxi+bΣyi+cn=Σzi

の連立方程式を解いてください。なお、ここで例えばΣxi^2は

Σxi^2=x1^2+x2^2+x3^2+・・・・・+xn^2

でデータが得られているなら定数です。

質問者さんが誤差をどの方向に考えているかで変わってくると思います。

全ての点の平面からの距離の二乗和の最小を考えるなら皆さんが回答されている通りだと思います。
ただ、単純な最小2乗法は全ての点から直線までの距離が最小になるよう定めているわけ
ではありません。y方向に誤差を考えていて、その2乗和が最小になるy=a+bxのa,bを
求めています。回帰の説明などを見れば明らかですね。点から直線に伸ばす矢印(誤差の量)は
y軸に平行に書かれています。

http://szksrv.isc.chubu.ac.jp/lms/lms1.h...続きを読む

Q3次元での点群に対する最小二乗法での平面の算出について(点と平面の距離

3次元での点群に対する最小二乗法での平面の算出について(点と平面の距離。残差ではない。)

--

点と平面のZ軸方向の距離(残差)の二乗和を最小とする場合には、
平面をax+by+c=zとして、Σ(ax+by+c-z)^2をa,b,cのそれぞれで偏微分して
それを=0とした連立方程式を解くことで解を得ることが出来ました。
また、式の形も、ある点のxとyを平面の式へ代入した際の値と、点のz値の差分を見ており、
簡単に納得のできるものとなりました。

これに対して、点と平面の距離(空間的な最小距離)の二乗和を最小とする場合には、
どのような流れで計算すれば良いのでしょうか?
点と平面の距離は|Ax+By+Cz+D| (A,B,Cは単位ベクトル)として求まりますが、
これをどう使うのかが分かりません。
Σ(Ax+By+Cz+D)^2をA,B,C,Dのそれぞれで偏微分して=0としても、
定数項が無いため、連立方程式の解がすべてゼロとなってしまいます。
強引に、Σ(A'x+B'y+C'z+1)^2として変形させて解いてみましたが、
得られたA',B',C'からA,B,C,Dに戻すと、Dがきちんと出ませんでした。(他についても怪しい。)

こういった状況に迷い込んでしまい、どう考えるのが良いのか分からなくなってしまいました。
指南いただけませんでしょうか?

3次元での点群に対する最小二乗法での平面の算出について(点と平面の距離。残差ではない。)

--

点と平面のZ軸方向の距離(残差)の二乗和を最小とする場合には、
平面をax+by+c=zとして、Σ(ax+by+c-z)^2をa,b,cのそれぞれで偏微分して
それを=0とした連立方程式を解くことで解を得ることが出来ました。
また、式の形も、ある点のxとyを平面の式へ代入した際の値と、点のz値の差分を見ており、
簡単に納得のできるものとなりました。

これに対して、点と平面の距離(空間的な最小距離)の二乗和を最小とする場合に...続きを読む

Aベストアンサー

平面の式は、単に Ax+By+Cz+D=0 としたのでは、一意に決まりません。
同じ平面が、 2Ax+2By+2Cz+2D=0 とでも 3Ax+3By+3Cz+3D=0 とでも
書けるからです。
そのために、「(A,B,C) は単位ベクトル」としたのではありませんか?
だから、Σ(Ax+By+Cz+D)^2 を最小化するときに、単なる最小値でなく、
A^2+B^2+C^2=1 という制約下での最小値を探せばよいのです。
ラグランジュの未定乗数法が使えます。

あるいは、制約なしで、Σ(Ax+By+Cz+D)^2/√(A^2+B^2+C^2) を最小化
してもよいのだけれど。

Q任意の面内にある点の座標から面の傾きを求める方法を教えて下さい。

任意の面内にある点の座標から面の傾きを求める方法を教えて下さい。

XYZ軸で構成される3次元空間があります。
そこに面Aが存在するとします。
この面Aの傾きを求めるためには
面A上にある座標、a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3)の3点が分れば
傾きは求まるかと思います。
(実際は任意のxyの位置にある面Aの高さzを求めてa,b,cを決める)

この面を水平に補正しようとする場合の
x軸周りに?度、y軸周りに?度というのを求めたい場合
どのようにすればよいのでしょうか?

また実際は面Aにもたわみがありますので
もっとたくさんの点で面Aの高さを求め、
そこからx,y軸周りの傾きを近似する必要がありますが
その場合もどのようにすればよいのでしょうか?

ご回答、または参考サイトをお教えいただきたいと思います。

Aベストアンサー

#1です。補足します。
#1にて書いた通り私は詳細まで説明出来ません。直線近似については、直線を設定して各点と直線の距離の和が最小になるように傾きと切片を決定します。平面についても同じ原理です。各点と平面の距離が最小になるよう法線ベクトルと通過点を決定します。

Q接平面の式

曲面z=3-x^2-y^2 の点(1,1,1)における接平面の式は
どのように求めればいいのでしょうか?

また、その接平面から距離が√5となる平面の式も
求めたいのです。
よろしくお願いします。

Aベストアンサー

参考程度に

「曲面z=3-x^2-y^2 の点(1,1,1)における接平面の式は
どのように求めればいいのでしょうか?」

接平面の方程式がいりますね。
z=f(xy), 点(a,b,c) の時の 接平面の方程式は、
z-c=fx'(a,b)(x-a)+fy'(a,b)(y-b)
ですね。
z=3-x^2-y^2 の点(1,1,1)の場合は、
c=1, {∂f(xy)/∂x}(1,1,1)=-2x=-2
{∂f(xy)/∂y}(1,1,1)=-2y =-2
z-1=-2(x-1)-2(y-1)=-2x-2y+4
z=-2x-2y+5
ということですかね。

Q陰関数の定理がわかりません

陰関数の定理について、
証明はまだ習わないで、定理だけいきなり出てきたのですが、
読んだだけではいまいち意味がつかめませんでした。
この定理が何をいおうとしているかわかり易く
説明していただけないでしょうか?
(漠然とした質問で申し訳ありません)
___________________________________
 陰関数の定理:
f(x, y) をR2 におけるC1 級関数とし,
点(a, b) において
f(a, b) = 0; fy(a, b) ≠ 0とする.
このときa を含むある小さな開区間I をとれば
I の上で定義されたC1 級関数
y = φ(x) で次の条件を満たすものがただ1つ存在する:
b = φ(a),
f(x, φ(x)) = 0 (x は 閉区間I内),
さらに
φ’(x) = -{fx(x, φ(x))}/{fy(x, φ(x)}
が成立する.
___________________________________

Aベストアンサー

とりあえず,もうちょっと偏微分や関数の勉強を
頑張ってください.
何か根本的な部分を勘違いしている可能性があります.

>f(x,y)=0はそもそもxy平面上でのことで、3次元ではないのに、
>どうやって“fy(a, b)”を考えることができるのでしょうか?
>fy(a, b)は3次元的に考えないと値を出せないと思うのですが、、、

これは次のように表現を変えてみましょう

f(x)=0はそもそも数直線上でのことで、2次元ではないのに、
どうやって“f'(a)”を考えることができるのでしょうか?
f'(a)は2次元的に考えないと値を出せないと思うのですが、、、

おっしゃってることが「おかしい」ことがお分かりになりますか?

f(x,y)というのは,R^2上の関数fの点(x,y)での値です.
したがって,z=f(x,y) と考えれば,これは
確かにR^3での「グラフ」になります.
これは y=f(x) が平面のグラフになることと同じです

翻って,f(x,y)=0 というのは,
R^2の点(x,y)でf(x,y)=0となる点(の集合)のことです.
これは f(x)=0 の場合は「解」に相当しますが,
f(x,y)=0も「解」(の集合)とみなせばいよいだけです.

また,偏微分f_y(x,y)も単に点(x,y)での値に過ぎませんので
3次元とか考えずに計算できます.

陰関数の定理というのは,
陰関数f(x,y)=0を,y=φ(x)という形で表現できる
ということを(特定の条件下で)保証する定理で
実際は,いろいろな理論の根底で使われます.

とりあえず,もうちょっと偏微分や関数の勉強を
頑張ってください.
何か根本的な部分を勘違いしている可能性があります.

>f(x,y)=0はそもそもxy平面上でのことで、3次元ではないのに、
>どうやって“fy(a, b)”を考えることができるのでしょうか?
>fy(a, b)は3次元的に考えないと値を出せないと思うのですが、、、

これは次のように表現を変えてみましょう

f(x)=0はそもそも数直線上でのことで、2次元ではないのに、
どうやって“f'(a)”を考えることができるのでしょうか?
f'(a)は2次元的に...続きを読む

Q3次元座標2点からの直線式の求め方

お世話になります。

3次元座標2点からの直線式(ax+by+cz=0)の求め方を教えて下さい。

2次元座標であれば、1つの傾きから算出できるのですが、3次元座標になると、X-Y平面、Y-Z平面での傾きの使い方がこんがらかってしまいます。
基本的な質問で申し訳ありませんが、よろしくお願い致します。

座標1 = (x1,y1,z1)
座標2 = (x2,y2,z2)

以上

Aベストアンサー

> 直線式(ax+by+cz=0)の求め方を教えて下さい。
3次元座標では(ax+by+cz=0)は原点を通る平面になり、直線の式ではありません。ax+by+cz=dは平面の一般式です。

2点を通る直線の式には公式があります。
以下のように簡単に導けます。
点(x1,y1,z1)を通り方向ベクトル(x2-x1,y2-y1,z2-z1)の直線ですから
媒介変数形式で
(x,y,z)=(x1,y1,z1)+t(x2-x1,y2-y1,z2-z1)
と成ります。
これを変形してすれば
(x-x1)/(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1)
と3次元座標の直線の式となります。

Q3次元ベクトルをある軸ベクトルで回転させたい

3次元ベクトルの求め方を教えてください。

下記図のように始点を軸ベクトルでθ(度)だけ回転したときの?の位置を求めたいのです。
これはどのような計算方法になるのでしょうか?なかなか思いつかなくて非常に悩んでいます。
アドバイスや回答をいただけたら助かります。よろしくお願いします。

Aベストアンサー

先ず、中心点(Sx,Sy,Sz)が原点にくるよう全体を平行移動させます。
(一番最後に元に戻します)
始点(Px,Py,Pz)は、(Px-Sx,Py-Sy,Pz-Sz)に移ります。この座標を(Px',Py',Pz')とします。

次に、回転軸ベクトル(Ax Ay Az)を回転させ、x軸に合致させます。それには二回の
回転変換が必要です。
最初に、ベクトル(Ax Ay Az)と、x軸方向単位ベクトル(1 0 0)のなす平面の法線ベクトルが
z軸に合うよう、x軸を回転させます(その角度をφとします)。
すると、回転軸ベクトルはx-y平面上に乗るので、それがx軸に合うよう、z軸を回転させます
(その角度をψとします)。

ベクトル(Ax Ay Az)と、x軸方向単位ベクトル(1 0 0)のなす平面の法線ベクトルは、(0 Az -Ay)。
x軸周りにφ回転させると、このベクトルは、
「1  0    0   「 0  =「      0
0 cosφ -sinφ   Az   Az・cosφ+Ay・sinφ
0 sinφ  cosφ」 -Ay」  Az・sinφ-Ay・cosφ」
で、z軸ベクトルに合うので
「      0      =「0
Az・cosφ+Ay・sinφ  0 
Az・sinφ-Ay・cosφ」  1」
これから、cosφ=-Ay/(Ay^2+Az^2)、sinφ=Az/(Ay^2+Az^2)
∴ φ=Arctan(-Az/Ay)

回転軸ベクトル(Ax Ay Az)は、
「1  0    0   「Ax =「      Ax      =「       Ax                   =「Ax 
0 cosφ -sinφ   Ay   Ay・cosφ-Az・sinφ   Ay・{-Ay/(Ay^2+Az^2)}-Az・{Az/(Ay^2+Az^2)}   -1
0 sinφ  cosφ」  Az」   Ay・sinφ+Az・cosφ」  Ay・{Az/(Ay^2+Az^2)}+Az・{-Ay/(Ay^2+Az^2)}」  0」
に変換され、x-y平面上に乗ります。これを(Ax' Ay' Az') とします。
つまり、(Ax' Ay' Az')=(Ax -1 0)

始点(Px',Py',Pz')もこの変換を受けるのですが、変換を全部纏めて後、一括変換させます。

今度は、x-y平面上に乗った回転軸ベクトル(Ax' Ay' Az')を、z軸の周りにψ回転させます。
「cosψ -sinψ 0 「Ax'  =「Ax'・cosψ-Ay'・sinψ =「Ax・cosψ+sinψ
sinψ  cosψ 0   Ay'   Ax'・sinψ+Ay'・cosψ   Ax・sinψ-cosψ
  0    0   1」  Az'」       Az'      」     0      」
これが、x軸ベクトルに合うので、
Ax・cosψ+sinψ=1
Ax・sinψ-cosψ=0
これから、cosψ=Ax/(Ax^2+1)、sinψ=1/(Ax^2+1)
∴ ψ=Arctan(1/Ax)

以上の回転の変換の積は、
「cosψ -sinψ 0 「1  0    0   =「cosψ -sinψ・cosφ  sinψ・sinφ
sinψ  cosψ 0   0 cosφ -sinφ   sinψ  cosψ・cosφ -cosψ・sinφ
  0    0   1」  0 sinφ  cosφ」   0     sinφ      cosφ   」

この変換を始点(Px',Py',Pz')に施します。
「cosψ -sinψ・cosφ  sinψ・sinφ  「Px' = 「Px'・cosψ-Py'・sinψ・cosφ+Pz'・sinψ・sinφ
sinψ  cosψ・cosφ -cosψ・sinφ  Py'   Px'・sinψ+Py'・cosψ・cosφ-Pz'・cosψ・sinφ
  0     sinφ      cosφ   」 Pz'」  Py'・sinφ+Pz'・cosφ               」 

この点を(Px”,Py”,Pz”)とします。

さて、ここでx軸に合った回転軸ベクトル(1 0 0)周りに(Px”,Py”,Pz”)を角度θ、回転させます。
「1  0    0   「Px” =「     Px”   
0 cosθ -sinθ   Py”  Py”・cosθ-Pz”・sinθ 
0 sinθ  cosθ」  Pz”」  Py”・sinθ+Pz”・cosθ」

これを(P_x, P_y, P_z)とします。

今度は、回転させた回転軸を元に戻す変換です。
回転の変換の逆行列は、行列各要素の余因子の行と列を入れ替えたものを行列式で割ったもので、
行列式は、(cosψ)^2+(sinψ)^2=1 なので、逆行列は
「 cosψ      sinψ        0  
-sinψ・cosφ  cosψ・cosφ   sinφ
sinψ・sinφ   -cosψ・sinφ  cosφ」

これを、(P_x, P_y, P_z)に施します。
「 cosψ      sinψ        0   「P_x =「P_x・cosψ+P_y・sinψ
-sinψ・cosφ  cosψ・cosφ   sinφ  P_y   -P_x・sinψ・cosφ+P_y・cosψ・cosφ+P_z・sinφ
sinψ・sinφ   -cosψ・sinφ  cosφ」 P_z」  P_x・sinψ・sinφ-P_y・cosψ・sinφ+P_z・cosφ」

結局、θ回転後のP点の座標は、
x座標 : P_x・cosψ+P_y・sinψ
y座標 : -P_x・sinψ・cosφ+P_y・cosψ・cosφ+P_z・sinφ
z座標 : P_x・sinψ・sinφ-P_y・cosψ・sinφ+P_z・cosφ
となります。

ここで、置き換えた変数を順次、元に戻します。
P_x、P_y、P_z を Px”、Py”、Pz” に、
Px”、Py”、Pz” を Px’、Py’、Pz’ に、
最後に、平行移動を戻して Px’、Py’、Pz’ を Px、Py、Pz に直します。

先ず、中心点(Sx,Sy,Sz)が原点にくるよう全体を平行移動させます。
(一番最後に元に戻します)
始点(Px,Py,Pz)は、(Px-Sx,Py-Sy,Pz-Sz)に移ります。この座標を(Px',Py',Pz')とします。

次に、回転軸ベクトル(Ax Ay Az)を回転させ、x軸に合致させます。それには二回の
回転変換が必要です。
最初に、ベクトル(Ax Ay Az)と、x軸方向単位ベクトル(1 0 0)のなす平面の法線ベクトルが
z軸に合うよう、x軸を回転させます(その角度をφとします)。
すると、回転軸ベクトルはx-y平面上に乗るので、それがx軸...続きを読む

Q3次元空間での傾き、切片の求め方

ある点S(X1,Y1)からある点G(X2,Y2)の直線があると仮定します。
このとき
傾きA=(Y2-Y1)/(X2-X1)
切片BはY=AX+Bより
   =Y-AX
と、2次元空間の場合はわかります。

ですがこれが3次元空間になるとどのように解けばいいのか分からないです。分かる人がいたら教えてください。



ある点S(X1,Y1,Z1)からある点G(X2,Y2,Z2)の直線があると仮定します。
このとき
傾きA= ?
切片B= ?

Aベストアンサー

3次元空間では、「切片」はあるとは限りません。
というのは、軸と交わらないこともあるからです。

3次元空間の場合には、唐突にも見えますがベクトルの考え方を使います。
これは 2次元空間の場合にも応用できます。

以下では、ベクトルの知識はもたれているとして記します。

直線上のある点Aの位置ベクトルを a↑と表すことにします。
方向ベクトルを u↑とすると、直線上の点Pの位置ベクトルp↑は

p↑= a↑+ k* u↑ (kは実数)

と表されます。

方向ベクトルは「ある点S(X1,Y1,Z1)からある点G(X2,Y2,Z2)」であれば
SG↑= (X2-X1, Y2-Y1, Z2-Z1)
として表すことができます。
ベクトルの考え方をしっかりもっておけば、2次元でも3次元でも対処できるようになります。


人気Q&Aランキング