中小企業の働き方改革をサポート>>

最近ツェナーダイオードを通して、トンネル効果の現象について学びましたが、頭の中がこんがらがって、よくわからなくなってきています。
発光ダイオードは電子が伝導帯から価電子帯にバンドギャップを超えて
移動するときに失われたエネルギーが発光として形に表れる仕組み、すなわちバンド間遷移によって発光が起こりますよね?
エネルギー障壁をバンドギャップとしたら、バンドギャップにトンネルを掘って伝導帯から価電子帯へ電子が移動したことになり、このバンド間遷移はトンネル効果と言っていいのでしょうか?また光電効果もトンネル効果???
なんか色々な用語がたくさん出てきて頭の中がぐちゃぐちゃになっています。
トンネル効果とバンド間遷移の明確な違いってなんなんでしょうか?
こんな私でもわかるような易しい回答で、どうかよろしくお願い致します。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

いい質問ですね。


#1さんも#2さんも一般論の答えとしては正しいのですが、
この場合は、ツェナーダイオードなので、高電場がかかっていることが味噌です。(と言ってもSiのバンドギャップは1.1eVなので電圧が1.1Vより大きくかかっていればいい。)

#1さんの言い方をすれば、急な坂道に建っている家です。
坂の上から来た人は、いきなり2階に入れます。坂の上の方が
2階より高いから。

たとえ話と異なる点は坂の上から来た人が2階に入るときに
状態のない場所(バンドギャップ)を斜めに越えることになり、
ここがトンネル効果になります。電圧が上がると実質的なバンドギャップの厚さが薄くなるので、つまりバリアの厚さが薄くなるので、トンネル確率がずっと増えます。

この場合、エネルギー的にもつじつまが合うので、#2さんがおっしゃられるように無視できるような小さな確率ではなく、充分に
観測できます。江崎さんのトンネルダイオードなんかがあるでしょう。

>トンネル効果とバンド間遷移の違い?
そう考えると少し難しいですね。
トンネル効果の遷移行列要素が<f|i>なのに対して
バンド間遷移は<f|er|i>となることでしょうか?
    • good
    • 0

#1のお答えは、正しいのですが。


トンネル効果は「有限の」エネルギー差を持った「励起状態」への移動も、少ないながら起こさせます。ゼロではありません。問題になるぬほど小さいので蛇足ですがね。
    • good
    • 0

バンドギャップというのは、いわば1階と2階の床の高さの違いです。


1階から2階に行くには、階段を上らなければなりません。
元気のある奴だけが2階に上がれます。
あるいは、2階いる奴は1階に「落っこちる」ことができます。
このときにエネルギーを放出します。

トンネル効果で移動するのは、同じ階の別の部屋へ、です。
部屋は壁で仕切られていますから、壁を乗り越えないと隣の部屋へは行けないのですが、その壁にドアがあるのを見つけた奴は、壁をよじ登らなくてもドアを開けて隣の部屋にいけるのです。しかし、このドアは巧妙に隠されていてなかなか簡単には見つからないのです。
ごくわずかな幸運な奴だけが壁を越えられます。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q鏡像力による斥力?

http://phys-chem.net/modules/d3forum/index.php?post_id=109

鏡像力とは、このページに書かれているように金属の近くに電荷をもってきたときに、金属-真空界面での電場の境界条件によって
、金属内に鏡像電荷が生じ、引力が発生する現象ですが、
イスラエルアチヴィリの本によれば、
電荷のある側の媒質の誘電率が鏡像電荷が生じる側の媒質よりも
誘電率が小さければ、鏡像力は斥力になる、と書かれてあるのですが、
これはどういう理屈によるものなのでしょうか?
どなたか教えて下さい。

Aベストアンサー

「境界の両側が誘電体の場合には、上記のような条件がないために、
鏡像電荷は生じない、或いは電荷よりももっと遠方に生じる、といったことがことがあり得るわけだということでしょうか?
となると、この界面と電荷の間での斥力の計算のためには
鏡像電荷のテクニックは使えないということでしょうか?」

(1)鏡像電荷のテクニックは使えます。
(2)Eの接線成分の連続性、Dの法線成分の連続性を使って、Eはもはや境界面に垂直ではなく、屈折します。
(3)導体の時は導体内にはE成分は0でしたが、この場合には存在可能なので、少し取り扱いは変わりますが、基本的には同じ方法を利用できます。
(4)誘導表面電荷密度は両者の誘電率を使って表されていますので点電荷に働く力は計算できます。

詳しくは、Jacksonの「電磁気学」第4章を参考にしてください。吉岡書店より、第2版の日本語訳が出ています。日本には他にもいい本があろうと思いますが、当方、20年近くアメリカ在住のためあまり他の教科書については分かりません。

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Qホッピング伝導とはどんなものですか?

電界をかけてその電荷が移動する「電気伝導特性」には物質ごとに色々とあると思います。金属中や半導体中の電気伝導特性は大学の固体物理等でなじみが深いのですが、ホッピング伝導とは具体的にどんなものをさすのかちょっとわからないので教えてください。

分かっているのは「連続ではない状態を電荷がホッピングしながら伝導していく」といった事くらいで、もっとちゃんと知りたいと思っています。特に

・ホッピング伝導のメカニズムは何か。
・そのメカニズムからホッピング伝導を数式化するとどうなるか。
・ホッピング伝導と言われる物質は具体的にどんなものがあるのか。
・この物質はホッピング伝導である。と言い切るには実験的にどのような電気伝導特性を示せばいいのか。

以上四点を知りたいと思っているのですが、ホームページ検索では表層しか分かりませんし、手元の書籍にはヒントは見当たりませんでした。

もしも良い書籍、およびホームページをご存知でしたら教えていただけるだけでも嬉しいのでよろしくお願いいたします。

Aベストアンサー

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化してあったのは,確か電気学会で出している「誘電体現象論」です。
半導体物理の本(SzeのPhysics of Semiconductor Devicesなど)にも出ていると思います。
-------------
PF型の伝導か否かは,測定した電流-電圧特性をPFプロットし,そのグラフの勾配が
所定の値になっているかどうかで判別できたと思います。
今,手元に本がないので正確なことが記述できません。本を見ていただくのが一番と思います。
または,WEB検索で「プール フレンケル」,「Poole Frenkel」と入力すれば,
関連のWEBサイトが見つかると思います。

以上

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化して...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qフェルミ準位について教えてください

私の持っている資料にフェルミ準位についてこう書かれていました。

「電子が絶対零度で存在することができる最大エネルギーをフェルミエネルギーと言う」

また教科書には

「フェルミ準位よりも下に位置する準位には電子が存在し、この上にある準位には電子がないようなものと考えて良い」

この考えで、真性半導体についての説明をんで混乱しました。

「価電子帯のすべての準位は電子で満たされている。従って絶対零度における電子の存在確率は価電子帯で1、伝導帯で零となり、存在確率が1/2となる。すなわちフェルミ準位は価電子帯と伝導帯の間に位置することになる。」
以下に教科書の図を示します(手書きで申し訳ありません)

EcとEvの間は禁制帯で電子が存在できないはずなのに、図を見ると、禁制帯の間にフェルミ準位があります。 上の教科書の説明からいくと、EfとEvの間には禁制帯ながら、電子が存在できることになりますが.....これはどういうことでしょうか?

このまま読み進めた結果PN接合のところでさらに混乱してしましました。

長くなってしましましたが、回答宜しくお願いします

私の持っている資料にフェルミ準位についてこう書かれていました。

「電子が絶対零度で存在することができる最大エネルギーをフェルミエネルギーと言う」

また教科書には

「フェルミ準位よりも下に位置する準位には電子が存在し、この上にある準位には電子がないようなものと考えて良い」

この考えで、真性半導体についての説明をんで混乱しました。

「価電子帯のすべての準位は電子で満たされている。従って絶対零度における電子の存在確率は価電子帯で1、伝導帯で零となり、存在確率が1/2となる。すなわち...続きを読む

Aベストアンサー

価電子帯の電子は、エネルギーを受けると伝導帯に遷移することはわかりますね?
また、フェルミ分布関数を考えてみると、フェルミエネルギーの点を原点にすると点対称な関数になっています。

遷移する前とした後の電子の準位の中心は、フェルミエネルギーになっているはずです。
電子がいくつも励起されると、分布関数に従ったエネルギー分布を見せます。
これは価電子帯のホールの分布も同じ形で分布します。
電子の分布をみた場合、価電子帯の上端と、伝導帯の下端の間の中心にフェルミエネルギーがあるような分布をしているということから、フェルミエネルギーはこのような位置になります。(ある種の対称性がある為、中心になります)

ドープ原子がある場合、電子が存在できる準位が禁制帯の中にできてしまう為、電子の存在分布が変わり、フェルミエネルギーが少し上もしくは下に移動することも教科書には書いてあることでしょう。


人気Q&Aランキング

おすすめ情報