【先着1,000名様!】1,000円分をプレゼント!

鉄の棒の先に立方体の重りを付けた、振り子の慣性モーメントを求めたいのですが、振り子全体の慣性モーメントの求め方と、鉄の棒と重りのそれぞれの慣性モーメントの求め方を教えてください。よろしくお願いします。

鉄の棒(長さL=275mm、質量m1=42.2g)と立方体(一辺の長さa=30mm、質量m2=226.2g)は以上のようになっています。
できれば詳しく教えていただけたら幸いです。よろしくお願いします。

A 回答 (1件)

慣性モーメントは、


回転中心をどこに取るかによって異なります。

定義は
http://ja.wikipedia.org/wiki/%E6%85%A3%E6%80%A7% …
を見てください。

おそらくは重心周りの慣性モーメントだと思うので、
鉄の棒では密度を線密度に置き換えて積分してください。
鉄の棒
I=∫[-L/2→L/2] m1/L * r^2 dr
立方体
I=∫∫∫[x:-a/2→a/2 y:-a/2→a/2 z:-a/2→a/2] m2/a^3*√(x^2+y^2+z^2) dxdydz
を計算します。

振り子全体の慣性モーメントは、回転中心からの慣性モーメントだと思うので、積分によって求めた、鉄の棒と立方体の重心周りの慣性モーメントを用いて、運動エネルギーを出します。

平面上の振り子運動だと思うので、
角度をθ、重心までの距離をr1,r2などと置いて、それぞれの重心のx座標、y座標をr、θで表します。
速度v1,v2を微分によって求めます。

ここで、運動エネルギーは、並進の運動エネルギーと回転の運動エネルギーの和なので、
E = 1/2 mv^2 + 1/2 Iω^2 (*)
の形であらわされます。

これを用いて、振り子の運動エネルギーを出して、この運動エネルギーを
E=1/2 Iω^2の回転のみのエネルギーとした時の、Iにあたる量が振り子の慣性モーメントです。
(振り子の回転中心は動かないので上記の形にかけます)
(鉄の棒と立方体は重心中心の慣性モーメントなので、重心が動くので(*)の形でかけます)
    • good
    • 1
この回答へのお礼

なるほど、詳しい説明ありがとうございます。
助かりました。

お礼日時:2008/10/27 11:42

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qボルダの振り子 慣性モーメント

ボルダの振り子で、金属球の質量をm、半径をa、
ナイフエッジから金属球までの長さをlとするとき、
支点回りの慣性モーメントIが
I=2ma^2/5+m(l+a)^2
となるのがわかりません。
この式の導き方を教えていただきたいです。

Aベストアンサー

平衡軸の定理を使っています。
平衡軸の定理とは、ある剛体を考えた時に、
その剛体の重心の周りの慣性モーメントをI(G)とすると、重心から距離hだけ離れた点、の周りの
慣性モーメントIは、I=I(G)+Mh^2で与えられる、
ということです。Mは剛体の質量です。ご質問の場合、I(G)というのは金属球の中心の周りの慣性モーメントです。
この値が、半径aとして、2/5ma^2となります。
その重心(中心)から、距離lだけ離れたナイフエッジ
における慣性モーメントは、平衡軸の定理を使うと
I=I(G)+mh^2=2/5ma^2+m(a+l)^2になるのです。

平衡軸の定理については、定理ということでそのまま
用いて構いません。式の導出が厄介だからこそ、定理として造られているのです。定理の導出まで知りたければ、力学の教科書をみれば分かります。

球の慣性モーメントについても、導出はけっこうやっかいです。球の重心の周りの慣性モーメント
がI(G)=2/5ma^2です。この導出も知りたければ、力学の教科書を見た方が速いです。もしここに書き込むと
かなりゴチャゴチャします。

平衡軸の定理を使っています。
平衡軸の定理とは、ある剛体を考えた時に、
その剛体の重心の周りの慣性モーメントをI(G)とすると、重心から距離hだけ離れた点、の周りの
慣性モーメントIは、I=I(G)+Mh^2で与えられる、
ということです。Mは剛体の質量です。ご質問の場合、I(G)というのは金属球の中心の周りの慣性モーメントです。
この値が、半径aとして、2/5ma^2となります。
その重心(中心)から、距離lだけ離れたナイフエッジ
における慣性モーメントは、平衡軸の定理を使うと
I=I(G)+mh^2=2/5ma^2+m...続きを読む

Q剛体振り子の周期

剛体振り子の運動方程式 I(θの2回微分)=-Mghθ
から、普通に
周期T=2π√(I/Mgh)
と教科書に書いてあるのですけど、この周期Tはどうやって求めたのでしょう?計算の仕方がわからないので教えてください☆お願いします!
T=2π/ωと、ω=(θの微分)を用いるのはわかるんですけど・・・。

Aベストアンサー

これはθに関する微分方程式を解かなければいけません。
すなわち
dθ^2/dt^2 = -Aθ
(A=Mgh/I)
これは、よく教科書に書いてある形の微分方程式なのですが、解き方をここに書くのは、ちょっと面倒なのでご勘弁ください。

代わりに、方程式から周期を求める簡易な方法を紹介します。

θはtの三角関数になることは、わかっているものとします。

そうすると
θ = a・sin(ωt+c)
tで一回微分すると
dθ/dt = ab・cos(ωt+c)
もう1回tで微分すると
I = dθ^2/dt^2 = -a・ω^2・sin(ωt+c)

これらを当初の方程式に代入すれば
-a・ω^2・sin(ωt+c) = -A・a・sin(ωt+c)
よって
ω=√A=√(Mgh/I)
T=2π/ω=2π√(I/Mgh)

Q単振り子の運動方程式

重力加速度g、質量m、紐の長さl、空気抵抗無視。

単振り子の運動方程式はこうなりますよね。
mlθ"=-mgsinθ
これがよくわからないのです。
どういう座標系についての運動方程式なのですか?

軌道にそってx軸を定めると
θl=x
mx"=-mgsinθ  軌道に沿った運動方程式?
⇔mlθ"=-mgsinθ  どういう座標系の運動方程式なの?
そしてこれの一般解はどういう風になりますか?
初期条件としてt=0でθ=φとします。

Aベストアンサー

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」などとわざわざ断っていないわけです。
極座標系に移行したことで問題の本質はx(t), y(t)の代わりにl(t), θ(t)を求めることに帰着します。大抵の場合はひもは伸び縮みしないと仮定しますのでlについて解く必要はなく、θについてのみ解くことになります。その方程式が
ml(d^2θ/dt^2)= -mg sinθ  (3)
なわけです。

しかしこの方程式は初等関数の範囲では解くことが出来ません。そこで初等物理の範囲ではθが小さい場合に限って問題を考えることにし、
sinθ≒θ  (4)
の近似を行って解きます。このとき(3)は
ml(d^2θ/dt^2) = -mg θ  (5)
となります。これの解き方はいろいろあります。線形微分方程式の理論を知っていれば解は直ちに
θ= C sin{√(g/l) t+α} ←Cは定数  (6)
だと分かります。αはC sinα=φを満たす定数です。
2階の微分方程式ですが初期条件が「t=0でθ=φ」の一つしか与えられていないので、定数が一つ未定のまま残ります(*1)。

愚直に微分方程式を解くのであれば下のようにやります。
l(d^2θ/dt^2)(dθ/dt) = -g θ(dθ/dt)
d/dt {(dθ/dt)^2} = -(g/l) d/dt (θ^2) ←両辺に(dθ/dt)をかけた上で、積の導関数の公式((y^2)'=2y y')を逆に使った
(dθ/dt)^2 = -(g/l) θ^2 +C1 ←C1は積分定数
dθ/dt = √{-(g/l) θ^2 +C1}  (7)
ここでθ=√(l/g)√C1 sinψと変数を変換すると
dθ/dt = √C1√(1-sin^2 ψ)  (8)
を経て
√(l/g)√C1 cosψ dψ = √C1 cosψ dt  (9)
と変形でき、両辺を積分することで
√(l/g) ψ= t+C2 ←C2は積分定数  (10)
を得ます。θの表式に戻すと
θ=√(l/g)√C1 sin{√(l/g) (t+C2)}  (11)
となります。これは本質的に(6)と同じ式です。初期条件「t=0でθ=φ」を代入することで
φ=√(l/g)√C1 sin{√(l/g)C2}  (12)
を得ます。これを使うと(11)からC1, C2のいずれかを消去できます。初期条件がもう一つあれば運動は一意に定まります(脚注参照)。

もちろん、「軌道に沿ってx軸を定める」でも解けます。この場合の運動方程式は
m(d^2 x/dt^2)= -mg sin(x/l)  (13)
となります。本質的に(3)と同じであることは申し上げるまでもなく、同様に解くことができます。

考え方は上記でよいはずですが中間で計算ミスがあるかも知れませんので、ONEONEさんご自身でも確認しながら読んで頂けると幸いです。

*1 もし初期条件が「t=0でθ=φまでおもりを持ち上げて手を放す」という意味であれば、「θの最大値はφ(厳密には|φ|)」という条件が新たに加わるので運動は一意に定まります。この場合はφsinα=φからα=π/2、よってθ=φsin{√(g/l) t+(π/2)}=φcos{√(g/l) t}と求めることができます。

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」...続きを読む

Q円盤の慣性モーメントが求めれません。

面密度ρの一様な円盤の中心周りの慣性モーメント

J=(mR^2)/2
となるのですがどうしてなるのか分かりません。

よろしくお願いします!

Aベストアンサー

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

で求まります。実際にやってみます。
dA=π(r+dr)^2-πr^2
=π(r^2+2rdr+dr^2-r^2)
=π(2rdr+dr^2) (5)

となるんですが、drはめっちゃ小さいんで2乗の項は無視します。
dA=2πrdr (6)

ですね。この式(6)を式(3)に代入します。
dm=2πρrdr (7)

式(7)を式(2)に代入します。
J=∫r^2・2πρrdr
=2πρ∫r^3dr (8)

見にくいんで書きませんでしたが、rの積分区間は0~Rです。
回転軸から端っこまでですから♪
積分を実行すると、
J=(πρR^4)/2 (9)

になります。
ここで、円盤の質量mは次式で与えられます。
m=πρR^2 (10)

式(10)を式(9)に代入すれば出来上がりです♪
J=(mR^2)/2 (11)

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

...続きを読む

Q加速度と角加速度の関係について

速度と角速度の関係は
中心から質点までの距離がr,質点の速度がv,とすると
角速度ω=v/r [rad/s]
になると思うのですが,
加速度と角加速度の関係は
中心から質点までの距離がr,質点の加速度がa,とすると
角速度α=a/r [rad/s^2]
となるのでしょうか?
ご教示よろしくお願い致します。

Aベストアンサー

半径rが定数とすれば、その通りです。
加速度、角加速度はそれぞれ速度、角速度の単位時間の変化量(時間微分)ですので、加速度は「a=dv/dt」、角加速度は「α=dω/dt」と表せます。
同時に、角速度の式「ω=v/r」の両辺を時間で微分すれば「dω/dt=(dv/dt)/r」となり、この式はすなわち「α=a/r」となります。
ただし半径rそのものが時間関数r(t)の場合はこの限りではありません。

Q回転運動の運動エネルギーについて困っています。

回転運動の運動エネルギーについてよく分からないところがあり困っています。

回転運動の運動エネルギーについてよく分からないところがあり困っています.

問題は,写真に示すような長さl,質量mの一様な剛体棒の一端Oが速度vで水平に移動し,そのO点を中心に角速度(θ')で回転している.棒の運動エネルギーを次の中から選べ.ただし,棒の太さは長さに対して十分に細いものとする.

という問題で,解答は

(1/6)・m・l^2・(θ')^2 + (1/2)・m・v^2・ + (1/2)・m・l・v・(θ')・cosθ

です.解説には並進運動と回転運動とに分けて解説してあり、

[並進運動]
Tr= (1/2)・m・v^2 となるのは理解できます.

[回転運動]
剛体の回転中心Oにおける慣性モーメントIo=(1/3)・m・l^2
となるのは理解できるのですが,その後の 回転中心Oまわりの回転エネルギーToは,

To=(1/6)・m・l^2・(θ')^2 + (1/2)・m・l・v・(θ')・cosθ のところで,

なぜ第2項がでてくるのかが分かりません.

回転の運動エネルギーは
(1/2)・(Io)・(θ')^2なのに,なぜ第2項が出てくるのでしょうか.
どなたか助けてください.お願いします.

回転運動の運動エネルギーについてよく分からないところがあり困っています。

回転運動の運動エネルギーについてよく分からないところがあり困っています.

問題は,写真に示すような長さl,質量mの一様な剛体棒の一端Oが速度vで水平に移動し,そのO点を中心に角速度(θ')で回転している.棒の運動エネルギーを次の中から選べ.ただし,棒の太さは長さに対して十分に細いものとする.

という問題で,解答は

(1/6)・m・l^2・(θ')^2 + (1/2)・m・v^2・ + (1/2)・m・l・v・(θ')・cosθ

です.解説には並進運動と回...続きを読む

Aベストアンサー

この後は質問者さんのレスポンスを待ちたいと思いますが・・・・

>解答がこれを回転エネルギーの方に入れて並進と回転の分離ができているという表現をしているのはおかしいのです。

回転しない、つまり、角θを一定に保ったままの運動で現れない項を、「回転することによって生じてくる項」という意味で回転のエネルギーとしてまとめただけだと思いますが、そんなにおかしいですか?

#1にしたがって計算すれば、重心運動の運動エネルギー は

(1/2) M [ (V + (l/2)θ'cosθ)^2 + ((l/2)θ'sinθ)^2 ]

になります。このまま解釈すれば意味は明確です。

クロスタームと称しているものはこれの水平成分から出てくるもので、水平成分にはO点まわりの回転による成分とO点の並進による成分の二つが共に寄与しているので、そのクロスタームが出てくるのは当たり前です。

これを展開して分割し、

(1/2) M [ V^2 + V l θ'cosθ + (l^2/4)θ'^2(cosθ)^2 + (l^2/4)θ'^2(sinθ)^2 ]
=(1/2) M [ V^2 + V l θ'cosθ + (l^2/4)θ'^2 ]
=(1/2) M V^2 + (1/2) M V l θ'cosθ + (1/8) M l^2 θ'^2

この最後の項を回転のエネルギー(1/2)(1/12)Ml^2 θ'^2 = (1/24)M l^2 θ'^2 とあわせて

(1/8) M l^2 θ'^2 + (1/24)M l^2 θ'^2 = (1/2) [(1/3)Ml^2 ] θ'^2

と書き直してしまうから意味不明な項が残るんです。


速さVで動いている台から相対速度uで質量mの質点を打ちだしたときに、質点の運動エネルギーは

(1/2)m (V+u)^2 = (1/2) mV^2 + mVu + (1/2)mu^2

で、ここからmVuだけとり出してこのクロスタームにどういう意味があるかといわれても困るでしょう。
それと同じことです。

この後は質問者さんのレスポンスを待ちたいと思いますが・・・・

>解答がこれを回転エネルギーの方に入れて並進と回転の分離ができているという表現をしているのはおかしいのです。

回転しない、つまり、角θを一定に保ったままの運動で現れない項を、「回転することによって生じてくる項」という意味で回転のエネルギーとしてまとめただけだと思いますが、そんなにおかしいですか?

#1にしたがって計算すれば、重心運動の運動エネルギー は

(1/2) M [ (V + (l/2)θ'cosθ)^2 + ((l/2)θ'sinθ)^2 ]

になります。...続きを読む

Q角加速度とトルクと慣性モーメントの関係

トルクを慣性モーメントで割ると角加速度が出ると思うのですが
どうして出るのでしょうか?
トルク:N
角加速度:α
慣性モーメント:I
式はN=α・I
単位だけで見ると
N・m = rad/s^2 × kg・m^2
で一見関係が無いように見えますが・・・
感覚的に、軽くて小さなものと重くて平べったいものを同じスピード(加速度)で回すときは
後者の方がかなり力がいるのはわかるのですが・・・
式から関係性が見えません・・・
どなたかご存知の方、詳しい方、ご教示いただけますでしょうか?

Aベストアンサー

単位だけに注目します。

1Nは1kgの質量の物体を1m/s^2で加速させる力の大きさです。
つまり
1N=1kg・m/s^2

つまりトルクの単位は
N・m=kg・m/s^2・m=kg・m^2/s^2
となります。

慣性モーメントと角加速度の積は
kg・m^2・rad/s^2
となりますが、角度の単位radは無次元量(長さを長さでわったものだから)ですので無視できます。つまりこの積は
kg・m^2/s^2
とあらわせることになり、これはトルクの単位と等しいことがわかります。

Q慣性モーメントの単位

慣性モーメント単位が kgf・m^2 と表されているのですが、なぜ kgf なのでしょうか?
また、単位変換して kg・m^2 にするにはどうすればよいのでしょうか?
どなたか、よろしくお願いします。

Aベストアンサー

SI単位系では、慣性モーメントの単位はkg・m^2です。
ですが、重量単位系:力をW(kgf)として、力の単位にN(ニュートン)を用いないで慣性モーメントを定義する場合にkgfが現れます。それでも、慣性モーメントの単位はkgf・m・s^2です。ではkgf・m^2とは何なのかというと、GD2(ジーディースクエア)といって、正式には慣性モーメントではないが慣性モーメントの前段階のような値、ということです。例えば、円柱の上下方向の慣性モーメントはSI単位系では1/2MR^2(M:質量、R:半径、単位はkg・m^2)ですけど
これをGD2で表すと、1/2WD^2(W:重量、D:直径,単位はkgf・m^2)となります。重量は質量と値は等しいですが"質量"ではなく力です。つまり、質量に重力加速度がかかっています。ですから、慣性モーメントにするにはgで割る必要があります。また、直径の2乗で定義されてるから、半径の2乗に直すためさらに4で割ります。
それで、単位がkgf・m^2
からkgf・m・s^2となるわけです。ですが、相変わらず
kgfが入っているのでこれをSI単位に変換するには、
重量M=質量W(ただし値のみ。単位は異なる)であること
を利用し、1/2WD^2[kgf・m^2]をW→M、D→Rとし、4で割って、改めて単位をkg・m^2と置けばいいのです。他の慣性モーメントについても、全ての項がWD^2となっているから、同様に4で割り単位をkgf・m^2→kg・m^2とするだけです

参考URL:http://www.keiryou-keisoku.co.jp/databank/kokusai/torukusi/torukusi.htm

SI単位系では、慣性モーメントの単位はkg・m^2です。
ですが、重量単位系:力をW(kgf)として、力の単位にN(ニュートン)を用いないで慣性モーメントを定義する場合にkgfが現れます。それでも、慣性モーメントの単位はkgf・m・s^2です。ではkgf・m^2とは何なのかというと、GD2(ジーディースクエア)といって、正式には慣性モーメントではないが慣性モーメントの前段階のような値、ということです。例えば、円柱の上下方向の慣性モーメントはSI単位系では1/2MR^2(M:質量、R:半径、単位はkg・m^2)ですけど
これをGD2...続きを読む

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q大学物理の問題

以下の問題がわかりません・・・。解説をお願いしたいです。

半径a, 質量M の一様な円板の中心からb だけ離れた点を支点として円板を円直面内で微小振動させ
た。この振動の周期T を求めよ。このT を最小にするb 及びその時の周期Tmin を求めよ。


よろしくお願いします。

Aベストアンサー

円盤の慣性モーメント I = (1/2)Ma^2 + Mb^2
円盤に加わる力(重力)のモーメント N = bMgsinθ ≒ = bMgθ(微小振動なので)

以上から運動方程式は

Id^2θ/dt^2=-bMgθ

これは単振動の方程式なので、振動の角周波数= √(bMg/I)

周期(T) = 2π/角周波数 = 2π√(I/(bMg)) =2π√(1/(2gM))√(a^2/b+2b)

Tを最小にするbは上の a^2/b+2b を最小にするので

a^2/b+2b を b で微分すると -(a^2/b^2) + 2 = 0 ⇒ b = a /√(2)


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング