数学の未解決問題ってよく本で見ますが、
未解決の問題で小学生でも意味のわかるものが結構あると思います。
フェルマーの最終定理が証明されたときは一種の感動を覚えたのを記憶しております。
未解決問題は私もそこそこ知ってはいるのですが、新しい未解決問題を聞くと「自然は奥が深いな」っとつくづく思ってしまいます。
そこで、いろいろな未解決問題(素人にも意味がわかるようなもの)を教えていただけないでしょうか。よろしくお願いいたします。

このQ&Aに関連する最新のQ&A

A 回答 (6件)

前からつづく。

三角柱の中外で接触するしかありません。それはドーナッツになります。中接触の時、横置ドーナッツを水平に3面に分け、内1面を垂直に3分割した形となる。外接触の時、横置ドーナッツを垂直に3面に分け、内1面を水平に3分割した形となる。若しくは、クラインの壷状となる。よって球面上5色を必要とする図形は描けない。三角柱底面を広げると、平面の120度三分割ドーナッツになる。中の穴を外の空間に接触させると、ドーナッツは切られ紐状になり3面の接触が切れる。平面上でも、5色を必要とする図形は描けない。4面に接触する面は4角形以上です。3角形は3面にしか接しない。5つの四角形をそれぞれ接する様に置けるでしょうか。四角形の4辺は接触する(2本が一本になる)ので、出来た図の線は10本です。10本の線で5つの四角形が作れるでしょうか。立法体の辺は12本です。2辺を消すと面は4面となり5面は描けない。ドーナッツなら描ける。従って、平面及び球面に描かれたどの様な図形も、4色で塗り分けられると言えます。
    • good
    • 0

4色問題とは、全ての図形は、4色で塗り分けられるかと言う問題です。

5色要するとは、全ての5面が他の4面と接すること。それは、4本足の蛸に似ている。頭に4本の足が生えており、全ての4足が他の3足と接触出来るのか。両サイドの足を接触させると間の足は囲まれる為、向かいの足には接触出来ない。球面上でも同じです。4本足蛸が、ボールを抱いた形です。ボール上で4本足が接触出来るか。平面の時と結果は同じ。5色必要な図形は作れない。4色必要とは、4面が他の3面に接触しているので、3本足の蛸だ。3本の足は接触出来る。単純化すると120度で3分割したドーナッツ形になる。図の外の面が頭。球面上では、三本足蛸がボールを抱えた形を単純化すると三角柱となる。底面が蛸の頭で、3側面が足です。球面中の一面が無限に広がると平面になる。平面上絵の周囲の面は、収縮すると球面上の1面になる。絵は同じです。平面上の無限に広い1面と、球面上の1面は共に1色が必要で同じこと。三角柱底面を無限に広げると、平面の120度で三分割したドーナッツとなる。この三角柱の上面と底面を接触出来るでしょうか。3側面が筒状ならそれぞれ接触しています。3側面上で上面と底面を接触すると、3側面は紐状になり接触が切られます。次につづく
    • good
    • 0

純粋に(期待されている意味での)数学かどうかは疑問なのですが、


「巡回セールスマン問題」や「ナップサック問題」等があります。
いずれもよく似た問題です。小学生にもすぐ理解できるかと。争点は
「効率よく」解く方法です。全ての場合を解べれば説けるのですが、
その組み合わせがあまりにも大きくなるため、コンピュータですら扱いきれません

・巡回セールスマン問題
  幾つかの道で繋がった都市をセールスマンが尋ねていくとき、
 歩く道の長さを最も短くする方法を答えよ

・ナップサック問題
  ナップサックに詰めるものの価値の合計を最大にするにはどのように詰めればよいか答えよ
 (いくつもの品物があって、それぞれに大きさと価値が与えられています。
  ex. サッカーボール(\3000)は1個、バナナ(\400)は10個まで入る etc...)

他には、一筆書きができる条件は、「オイラー」が証明しました。
(全ての点から出ている辺が「偶数」か「2本だけが奇数」の時一筆書き可能)
一筆書きは、「全ての線を2回通ることなく通る」というものですが、
よく似たもので

「全ての点を2回通ることなく通れるか?」

という問題があります。
(一筆書きできるのを「オイラー路」と言うのに対し、「ハミルトン路」と言います)
このような問題はNP完全問題と言われています。
未解決問題はグラフ理論の分野に結構あるようです。

完全に未解決ではありませんが、4色問題と言うのも有ります。

「地図で隣り合ったところを異なる色で塗るとする。
 このとき、4色有れば塗り分けられることを示せ」

3色ではできないこと、5色ではできることは比較的簡単に示せるようです。
(3色でできないことは絵を描いてみればすぐに分かることです)
この問題は1000何百通りに分類されて、コンピューターによる総当たり方式
で証明されたようですが、あまりスマートな証明ではありません(^^;

秋山仁さんの本か、ピーターフランクルさんの本でそのような問題を
まとめた本があったような気がします。

文章がわかりにくくなってすみません。
問題の説明に図を使えないとしんどい問題が多いです(^^;
    • good
    • 0

フェルマー系なら下記URLを参考にしてみては



参考URL:http://freepage.gaiax.com/www/freepage/m/t/mathe …
    • good
    • 0

 よく知られていると思いますが、私は素因数分解の


効率的な手法を挙げさせていただきます。

 素因数分解とは、ご存知のように、ある数を
2つの素数(約数が1とその数の2つしかないような数)の
積に分解することですが、これを可能にする一定の
解法はまだ見つかっていません。一見簡単そうに
思えますが、ちょっとでも大きい数になると総当りで
1つずつ調べるしかないようです。例えば91。このくらいなら
すぐにできそうですが、案外大変です。もしこの
解法を見つけたら、かなりすごい発見だと思います。

 ちなみに、インターネットで情報保護の暗号技術で
広く使われているRSA法も、この素因数分解の困難さが
その暗号の解読されにくさの根拠になっています。
もちろん、コンピュータに総当りでずっと計算させ
つづければ、いずれ分解できるでしょう。しかし、
現在の計算能力では天文学的な時間がかかってしまうのです。
すごいですね。

 ちなみに、91は7x13でした。
    • good
    • 0

 こんにちは。

数学はド素人なんです。私も。ちょっと興味があってちょこちょこつまみ食いする程度です。
 で、その私でも、一応問題の意味はわかったというのをご紹介しましょう。
 「コラッツの問題」というものです。
 これは、ある数が偶数の場合は二分の一にし、奇数の場合には三倍して一を足すという単純なルールで反復計算するものです。例えば、最初が1なら、
   1→4→2→1
となって、最後のものは1ですから、また同じ事を繰り返します。ですから、1になったら「おしまい」としましょう。
 この反復、初期値を1から順に増やしていくと、「1」に戻るまでのステップ数や最大値がさまざまに変化しますが、初期値27でとんでもないことが起こります。ステップ数が111、最大値は9232にもなるのです。そしてやっぱり、最後は1に。
 この問題ですが、初期値にどのような数をとっても、必ず最後は「1」に戻るのかどうか、まだ証明されていないそうです。素人眼には、簡単そうに見えるのですが…
 以下はオマケです。この「コラッツの問題」を自動計算するプログラムです。Windowsマシンなら、「十進BASIC」で実行できます(入手先は下記の参考URLに)。

DO
LET i=i+1
LET n=i
LET st=0
LET mx=0
PRINT st,n
DO
IF MOD(n,2)=0 THEN
LET n=n/2
ELSE
LET n=n*3+1
END IF
LET mx=MAX(n,mx)
LET st=st+1
PRINT st,n
IF n=1 THEN EXIT DO
LOOP
PRINT "初期値 ";i
PRINT "ステップ数 ";st
PRINT "最大値 ";mx
PRINT "---------------------------------------------------"
WAIT DELAY 1
LOOP
END

 やたら行数を食いました。ごめんなさい。

参考URL:http://hp.vector.co.jp/authors/VA008683/
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qゴールドバッハ予想はナンセンスです。

2より大きな偶数は、2個の素数の和で必ず表せると、ゴールドバッハは予測しました。例えば14は、3+11=7+7と2つの素数の足し算で表現することが出来ます。実際にコンピュータで5×10の17乗の偶数まで成り立つことが証明されています。この事実は、何を意味しているのでしょうか。
偶数は、等しい2つの数に分けることが出来ます。偶数(2Pとする)を2つに等分した(Pとする)一方から、ある数(A)を引き(引いた後をXとする)、他方にその数(A)を足し(足した後をYとする)、XとYが共に素数である様なAが必ず存在すれば、予測は証明されます。
Y=X+2Aと表されます。表を使ってイメージを伝えます。横線の左端を0、右端を2Pとし、中間点をPとします。元々、XとYはP上にあります。Pが素数であれば、XとYを動かさなくても済みます。偶数(2P)=P(素数)+P(素数)と表されます。そうでない場合は、XをAだけ0に近づけなければならず、その分YはAだけ2Pに近づきます。
0からPまでの間には、素数が2から順番に3・5・7・11・13・17・19・23・29(どこまでも続きますが、説明の便宜上10個までとします)と順番に並んでいます。Pから2Pまでには、0からP間にある10個の素数の倍数が並んでいます。そうして、0からP間にある素数の位置にXを置いた場合、Yが0からP間にある10個の素数の倍数位置に来なければ、Yは素数となります。(素数の倍数の位置にYが来ると、Yは素数ではなくなります)
Pが、0からP間にある10個の素数である、2から29までのいずれかの素数で割切れる場合は、その位置にXを動かしても無駄です。Yがその素数の倍数になるからです。(PはXの倍数となる。P=X+Aなので、AもXの倍数である。従ってY=X+2AもXの倍数となり、Yは素数ではありません)その場合と、A=X/2の場合以外は、YはXを置いた位置の素数(Rとする)の倍数にはなりません。
そうして、Xを0からP間にある全ての素数上に置いたとき、Yが全ての場合において、0からP間にある素数の倍数の位置に来た時のみ、Yは素数ではあり得なくなります。その時のみ、偶数(2P)を2つの素数(X・Y)で表現することは出来ないと言えます。
 偶数(2P)を2つの素数で表現出来ない確率は、偶数(2P)が小さい間は、大変低いと言えます。Xを置くことが出来る位置は、素数の位置のみです。素数10個の例で説明すると、Xを10箇所の位置に置いて見て、その10回全てにおいて、Yはその10個の素数の倍数位置いずれかに来なければなりません。1回でもそれらの倍数の位置に来なければ、XとYは素数となります。Xを置くことが出来る位置は10であるのに対して、Yが来られる位置は非常に沢山あります。しかも、10回中1回でも来る事が出来れば良いのです。
 従って、偶数(2P)が小さい内は、2つの素数で表せない確率は大変低いと言えます。しかし、偶数(2P)が大きくなるに従って、0からPまでに現れる素数が多くなって行き、Pから2P間においては、増えた素数の倍数がどんどん除かれて行き、素数は次第にまばらに成って行きます。そして、偶数(2P)が大きくなるに従って、XとYが共に素数となれる確率は、低下して行きます。偶数(2P)が極端に大きくなると、Pから2P間に素数が全く存在しなくなることもあり得ます。その場合、偶数(2P)は決して2つの素数では表せません。
コンピュータで確認出来た範囲は、まだ偶数が小さく2つの素数で表現出来る確率が高かった為そうなっただけです。ゴールドバッハの予測は、言い換えれば、偶数が2つの素数で表せる確率が高い時には、その偶数はその2つの素数で表せると、当たり前の事を言っているだけだったのです。

2より大きな偶数は、2個の素数の和で必ず表せると、ゴールドバッハは予測しました。例えば14は、3+11=7+7と2つの素数の足し算で表現することが出来ます。実際にコンピュータで5×10の17乗の偶数まで成り立つことが証明されています。この事実は、何を意味しているのでしょうか。
偶数は、等しい2つの数に分けることが出来ます。偶数(2Pとする)を2つに等分した(Pとする)一方から、ある数(A)を引き(引いた後をXとする)、他方にその数(A)を足し(足した後をYとする)、XとYが共に素数である様なA...続きを読む

Aベストアンサー

言いたいことは、

偶数(2P)が極端に大きくなると、Pから2P間に素数が全く存在しなくなることもあり得るから、偶数(2P)は決して2つの素数では表せない。

でしょうか?


前の質問でも同様でしたが、ここにも無限の問題がでてきていますね。
無限について安易に論じないほうがいいですよ。


なお、任意の自然数 n に対して n と 2n の間には素数が存在することは証明されています(ベルトラン=チェビシェフの定理)。

Qコラッツの予想ははずれました。-

ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。
計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。
最初の数が奇数(X)の場合、3を掛けて1を足すと、X(奇数)×3(必ず奇数)+1=Y(必ず偶数)となります。従って、Yは偶数なので、次の計算は必ず割る2となります。よって、幾ら計算値をどんどん大きくしていこうとしても、X(奇数)×3+1=Y(偶数)→Y(偶数)÷2=Z(奇数)、Z(奇数)×3+1=O(偶数)、O(偶数)÷2=P(奇数)と、奇数→偶数の繰り返し以上には、計算値は大きくなっては行かないことが分かります。つまり、(ある奇数×3+1)÷2の計算結果が、必ず奇数であれば、計算値は無限に大きくなって行き、必ずしも最後は4→2→1の繰り返しとはならないことが証明されます。
 では、その様な始まりの奇数Xがあるか否か、エクセルを使って検証してみましょう。列Aに上の行から順番に、1・3・5・7・9・11・・・・と奇数を入力してください。列Bに上から順に「=(A1×3+1)/2」「=(A2×3+1)/2」「=(A3×3+1)/2」・・・・と、左のA列の奇数を3倍して1を足し2で割る数式を入力します。列Cに上から順に「=(B1×3+1)/2」「=(B2×3+1)/2」「=(B3×3+1)/2」・・・・B列のセルの計算値を、更に3倍して1を足し2で割る数式を入力します。同様の式をD列・E列・F列・・・に入力して行き、どんどん3倍して1を足し2で割る計算を行います。
この結果、全ての列の計算値が奇数となるものがあれば、計算値は無限に大きくなって行きます。そこで、各列において奇数が出現する様子を見てみましょう。B列では、上から2回に1度5・11・17・23・29・35・・と奇数が現れます。C列では、4回に1度17・35・53・71・89・107・125・・・と奇数が現れます。D列では8回に1度53・107・161・215・269・323・・・と奇数が現れます。E列では、16回に1度161・323・485・647・809・・・と奇数が現れます。F列では、32回に1度485・971・1457・1943・2429・2915・・・と奇数が現れます。G列では、64回に1度1457・2915・4373・5831・7289・・・・と奇数が現れます。以後同様に、H列では128回に1度、I列では256回に1度、J列では512回に1度奇数が現れます。
ここまでの計算で、奇数が連続するのは、512行目の1,023・1,535・2,303・3,455・5,183・7,775・11,663・17,495・26,243・39,365の1つです。3倍して1を足し2で割る計算をn回行えば、全ての計算値が奇数になるものは、2のn乗分の1に減少していきます。この事実は、簡単に証明出来るでしょう。
従って、計算を行えば行う程、計算値が奇数の連続になるものは1/2・1/4・1/8・1/16・1/32・・どんどん半分に減少していきます。しかし、無限の数の中では、2のn乗分の1は決して0にはなりません。3倍して1を足し2で割る計算をn回する場合、1から数えて2のn乗番目の奇数(又はその倍数番目の奇数)から始めると、n回の計算結果全てが奇数となります。計算値は大きくなる一方で、4→2→1の繰り返しにはなりません。
有限の数の範囲内では、計算値がその範囲を超えるまで計算を行っていけば、奇数が連続しなくなります。しかし、無限の数の中では、常に先に2のn乗番目の奇数があります。それは(1+2×2のn乗)で表現される数値で、尽きることはありません。そのnを∞にした数値から始めれば、無限に計算を繰り返しても4→2→1の繰り返しにはなりません。
少なくとも1組は、永遠に奇数が連続し数値が大きくなっていく組み合わせが存在します。従って、コラッツの予想は残念ながら誤っています。

ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。
計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。
最初の数が奇数(...続きを読む

Aベストアンサー

なんで別IDで二重投稿するの?


だからあ、∞は数値じゃないだってば。

(∞を数値とした体系もあるらしいけど、コラッツの問題とは別の話だから)


人気Q&Aランキング

おすすめ情報