確率変数X,Yがそれぞれ正規分布N(X|μx, σx^2),N(Y|μy, σy^2)に従っているとき,Z=X*YとおくとZの分布はどのような分布になるのでしょうか,またどのように導出すればよろしいでしょうか.参考になるHP等あればお教えください.

調べたところ,確率変数同士の和の分布について(Z=X+YのときのZの分布)は,畳み込みで求めるられ,また,正規分布に従う確率変数の自乗の分布はカイ2乗分布であることも分かりました.
これらを参考にZ=X*YのときのZの分布を求めようと,畳み込み同様に変数変換を行い積分をしようとしたのですが指数部の中が複雑になり積分が手に負えなくなってしまいます...

このQ&Aに関連する最新のQ&A

A 回答 (3件)

なんかの本で見たのだが、どこへ行ったかわからなくなってしまった。


途中までやってみる。
U=(X/σx + Y/σy)/√2, V=(X/σx - Y/σy)/√2,
と変換すると、U,Vは独立で、それぞれN(μ1,1),N(μ2,1)の正規分布にしたがう。
(μ1=(μx/σx + μy/σy)/√2, μ2=(μx/σx - μy/σy)/√2 とおいた)
このU,Vを用いると、
XY=(σxσy/2)(U^2-V^2)
と表される。U^2,V^2は独立で、それぞれ自由度1の非心カイ2乗分布にしたがう。つまり、XYは独立な非心カイ2乗変数の差で表せることになる。
μx=μy=0、σx=σy=1の場合、T=XYの分布は、うろ覚えだが、たぶん、ラプラス分布1/2*exp(-|t|)だったのではないかと思う。あってるかどうかは自分で確かめて。
    • good
    • 0
この回答へのお礼

gef00675さん,ご回答ありがとうございます.
うまく変数変換して他の分布で表現するんですね.大変勉強になりました.ただ,X,Yの線形結合であるU,Vがそれぞれ独立になるのか疑問に思いました.ちょっと自分で確かめてみようと思います.ありがとうございました.

お礼日時:2009/01/02 22:35

>,X,Yの線形結合であるU,Vがそれぞれ独立になるのか


X,Yをσx,σyで割っておいたのは、U,Vが独立になるようにしたかったから。
こうすると、expの中の交差項uvが現れず、u^2, v^2だけになる。

分散はこうやって処理できるのだが、μx,μyの処理が難しい。それゆえ非心カイ2乗分布が出てきてしまうのである。

μx,μyが0の場合であれば、少しは計算がしやすい。
t=xy, s=(y^2-x^2)/2と変数変換すると、
ヤコビアンはJ=x^2+y^2=2√(s^2+t^2)なので、
(x,y)の同時確率密度は、
1/√(2π)*exp(-x^2/2)*1/√(2π)*exp(-y^2/2)*dxdy
=1/(4π)*exp(-√(s^2+t^2))/√(s^2+t^2)*dsdt
となる。よって、tの確率密度関数は
f(t)=1/(4π)∫exp(-√(s^2+t^2))/√(s^2+t^2)*ds (-∞<s<∞)
と表される。被積分関数は原点について対称だから、s>0の部分だけ考えて2倍し、
 z=√(s^2+t^2), (s>0)
と変数変換すると
f(t)=1/(2π)∫exp(-z)/√(z^2-t^2)*dz (|t|<z<∞)
とも表される。この積分は初等関数では表せそうにない。
部分積分すれば、z=0での特異性が消えて、
f(t)=1/(2π)∫log(z/|t|+√((z/t)^2-1))*exp(-z)*dz (|t|<z<∞)
となる。この形なら数値積分は容易だろう。

ラプラス分布にはならんかった。ごめん。
    • good
    • 0

#2の訂正です。


μx,μy=0の場合:
t=xy, s=(y^2-x^2)/2と変数変換すると、
(x,y)→(t,s)と同時に、(-x,-y)→(t,s)の対応もあるので、
∬dxdy=2∬dsdtで、積分値を2倍しないといけなかった。
(極めて基本的なミス。。。こういう間違いはしないでね)

ヤコビアンはJ=x^2+y^2=2√(s^2+t^2)
(x,y)の同時確率密度は、
1/√(2π)*exp(-x^2/2)*1/√(2π)*exp(-y^2/2)*dxdy
=2/(4π)*exp(-√(s^2+t^2))/√(s^2+t^2)*dsdt。
tの確率密度関数は
f(t)=1/(2π)∫exp(-√(s^2+t^2))/√(s^2+t^2)*ds (-∞<s<∞)
 z=√(s^2+t^2), (s>0)と変数変換して、2倍して、
f(t)=1/π∫exp(-z)/√(z^2-t^2)*dz (|t|<z<∞)
部分積分すれば、z=|t|での被積分関数の特異性が消える。
f(t)=1/π∫log(z/|t|+√((z/t)^2-1))*exp(-z)*dz (|t|<z<∞)。
積分区間を固定するために、z=|t|*xと変数変換してもよい。
f(t)=1/π∫log(x+√(x^2-1))*|t|*exp(-|t|x)*dx (1<x<∞)。
ただし、t≠0。f(t)はt→0で無限大に発散する。

ここからは検算。
∫f(t)dt, (-∞<t<∞,t≠0)
=2∫f(t)dt, (0<t<∞)
=2/π∫dx*log(x+√(x^2-1))*∫t*exp(-tx)*dt
=2/π∫dx*log(x+√(x^2-1))*(1/x^2), (1<x<∞)
=2/π∫dx/(x√(x^2-1)), (部分積分)
=2/π*lim Arctan(√(x^2-1)), (x→∞)
=2/π*π/2
=1
無事、1になった。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qばらつきの掛け算

統計学に関する質問をさせていただきます。
N(μ1,σ1^2)の分布を持っているものと、N(μ2,σ2^2)の分布を持っているものを掛け算したとき、その結果はどのような分布になるのでしょうか?
具体的に申し上げます(カテゴリからちょっと外れてしまいますが)。とある電子回路の出力値が2つの部品の特性値の積で決定されるのですが、2つの部品のそれぞれの製造ばらつきが判明しているときに、出力値の分布が数式的にどのように表わすことがきるのかわからず悩んでいます。
同等の質問が既出でしたらごめんなさい。宜しくお願いいたします。

Aベストアンサー

確率的に変動する互いに独立な2つの変数x1, x2の積。一般には、かなりややこしい話になります。特にx1が(あるいはx2が)変動のために正になったり負になったりする、ということまで考慮すると。

 でも、製造ばらつきの話ですから、そんなに極端なばらつきは(多分)ないでしょう。もし、平均値μに比べて変動の幅σがうんと小さいのならば、ごく簡単な式で近似できます。

 p1, p2を、平均0、分散1の正規分布(標準正規分布)に従う、互いに独立な確率変数であるとして、
x1 = μ1 + σ1 p1
x2 = μ2 + σ2 p2
となっているものと考えます。以下は | σ1 / μ1 |<< 1であると仮定できる場合の話です。知りたいのは、x1x2がどうなるかですね。

 対数を取って
ln(x1) = ln ( (1+(σ1 / μ1)p1) + ln(μ1)
 ここで、ln(1+x)は|x|が小さい時
ln(1+x) ≒ x
であるから、仮定により、
ln ( (1+(σ1 / μ1)p1) ≒ (σ1 / μ1)p1
従って、
ln(x1) ≒ ln(μ1)+(σ1 / μ1)p1
です。なので
ln(x1x2)=ln(x1)+ln(x2) ≒ ln(μ1μ2)+q
ただしqは確率変数
q = (σ1 / μ1)p1+(σ2 / μ2)p2
です。
従って、対数を外すと
x1x2 ≒μ1μ2 exp(q)
ということになる。ところで |q|が小さいと仮定したのだから、
exp(q)≒1+q
であり、ゆえに
x1x2 ≒ μ1μ2 (1+q)

 さて、p1, p2は互いに独立で、どちらも標準正規分布に従うのだから、 qは平均0、分散 (σ1 / μ1)^2 + (σ2 / μ2)^2 の正規分布に従うことになります。

確率的に変動する互いに独立な2つの変数x1, x2の積。一般には、かなりややこしい話になります。特にx1が(あるいはx2が)変動のために正になったり負になったりする、ということまで考慮すると。

 でも、製造ばらつきの話ですから、そんなに極端なばらつきは(多分)ないでしょう。もし、平均値μに比べて変動の幅σがうんと小さいのならば、ごく簡単な式で近似できます。

 p1, p2を、平均0、分散1の正規分布(標準正規分布)に従う、互いに独立な確率変数であるとして、
x1 = μ1 + σ1 p1
x2 = μ2 + σ2 ...続きを読む

Q2つの正規分布を合成したらどうなるのでしょうか?

現在大学の研究の過程で統計学を学ぶ必要がでてきました。僕自身は統計学に詳しくはないので知識のある方の回答は非常に助かります。
どうかご教授よろしくおねがいします。


平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが



例えば互いに独立で

国語の平均点、分散を(μ1,σ1)としての正規分布f(国語)
数学の平均点、分散を(μ2,σ2)としての正規分布f(数学)

とした時の国語と数学の合計得点の分布f(国語+数学)はどのように表せばよいのでしょうか?

もしμ3=μ1+μ2,σ3=σ1+σ2のように平均も分散も和で考えてよいのなら

f(国語+数学)=1/((√2π)σ3) exp-{((x-μ3)^2)/2σ3^2}

が答えだと思っているのですが、それとは別のやり方で



f(国語)=1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}と
f(数学)=1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}をたたみこみ積分すれば答えがでるのではないかと考えています。

しかし、僕の数学の知識ではこれができなくて困っています。ガウス積分の公式を使ったりしなければいけないのではないかとも考えいるのですが行き詰っています。

アドバイスよろしくお願いいたします。

現在大学の研究の過程で統計学を学ぶ必要がでてきました。僕自身は統計学に詳しくはないので知識のある方の回答は非常に助かります。
どうかご教授よろしくおねがいします。


平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが



例えば互いに独立で

国語の平均点、分散を(μ1,σ1)としての正規分布f(国語)
数学の平均点、分散を(μ2,σ2)としての正規分布f(数学)

とした時の国語と数学の合計得点の分布f(国語+数学)はどのように表せばよいのでしょうか?

...続きを読む

Aベストアンサー

> 平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが
一般的には分散をσ^2と表し、標準偏差はその平方根でσと表します。
質問者さんが示された確率密度関数は、平均 μ、分散 「σ^2 」の正規分布のものです。分散と標準偏差の扱いをもう少しきちんとしましょう。

> μ3=μ1+μ2, σ3=σ1+σ2のように平均も分散も和で考えてよいのなら
2つの確率変数 X, Y があり、それぞれの平均と「分散」がμ1, (σ1)^2, μ2, (σ2)^2 であるとします。確率変数 Z を Z = X + Y で定め、Z の平均と「分散」をμ3, (σ3)^2 とすると・・・

μ3 = μ1 + μ2
は、X, Y がどのような分布であっても(X, Y が異なる分布であっても)成立しますし、X, Y が互いに独立であるか否かに関わらず成立します。
また、X, Y が互いに独立であれば(それらの分布によらず)、
(σ3)^2 = (σ1)^2 + (σ2)^2
が成立します。(このとき Z = X + Y の「標準偏差」σ3 は、σ3 = √( (σ1)^2 + (σ2)^2 ) )

> f(国語+数学)=1/((√2π)σ3) exp-{((x-μ3)^2)/2σ3^2}
> が答えだと思っているのですが
X, Y が互いに独立な確率変数であり、共に正規分布に従うならば、X + Y もまた正規分布に従うという事実は確かにありますが、これは正規分布の「再生性」と呼ばれる特別な性質であることを理解していなければなりません。その点、大丈夫ですか?

> それとは別のやり方で
> f(国語)=1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}と
> f(数学)=1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}をたたみこみ積分すれば答えがでるのではないかと考えています。
上述したように、正規分布の再生性を示す必要があるならば、畳み込み積分でそれを示すのが一法なのであって、何も「別のやり方」ではありません。
案ずるより計算するが易しです。式の整理が面倒なだけで、特別な知識は不要です。
f(x) = 1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}
g(x) = 1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}
h(x) = ∫f(t) g(x - t) dt
  = 1/(2πσ1 σ2) ∫exp{ - (t - μ1)^2 / (2σ1^2) - (x - t - μ2)^2 / (2σ2^2) } dt
  epx( ) の指数部を t で平方完成して
  = 1/(2πσ1 σ2) ∫exp{ - (t - 何ちゃら )^2 / (2σ1^2 σ2^2 / (σ1^2 + σ2^2)) - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) } dt
  = 1/(2πσ1 σ2) exp{ - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) } ∫exp{ - (t - 何ちゃら )^2 / (2σ1^2 σ2^2 / (σ1^2 + σ2^2))} dt
  = 1/√(2π(σ1^2 + σ2^2)) exp{ - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) }
  (∵ ∫ exp ( - (t - A)^2 / 2B^2 ) dt = √(2π) B )
μ3 = μ1 + μ2, σ3^2 = σ1^2 + σ2^2 とおけば
h(x) = 1/(√(2π) σ3) exp( - (x - μ3)^2 / 2 σ3^2 )
途中、「何ちゃら」の部分は省略してますので、興味があれば追っかけてみてください。

なお、本件は確率論において、ごくごく基本的な事項です。
もし、これから確率統計を使って研究をされるのならば、このような件を簡単に質問して済ませるのは危うい感じがします。ちゃんと書籍を読まれ、その上で質問されるのが宜しいでしょう。

> 平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが
一般的には分散をσ^2と表し、標準偏差はその平方根でσと表します。
質問者さんが示された確率密度関数は、平均 μ、分散 「σ^2 」の正規分布のものです。分散と標準偏差の扱いをもう少しきちんとしましょう。

> μ3=μ1+μ2, σ3=σ1+σ2のように平均も分散も和で考えてよいのなら
2つの確率変数 X, Y があり、それぞれの平均と「分散」がμ1, (σ1)^2, μ2, (σ2)^2 であるとします。確率変数 Z を Z = X + Y で定め、Z ...続きを読む

Q確率密度関数の四則演算

http://oshiete.goo.ne.jp/qa/8571563.html

このページで二つの独立した確率密度関数の
足し算と掛け算の確率密度関数に関してご回答いただいたのですが

x + y の確率密度関数が二等辺三角形

x × y の確率密度関数が-ln(t)

になるのはどういう計算を行っているのでしょうか?

検索しても調べてみたのですが
解説ページが見つかりませんでした。
解説ページなどあれば教えてください。

Aベストアンサー

かのご質問ではコタエばかりが求められており、かつ、あんまり適切な回答がないようなので、結果だけをカキコしたのでしたが、こりゃ、セキニンとらんといかんですかね。

 正規分布を日常的に使っているくせに、意味がよく分かってない人がちょいちょいいます。「平均0、分散1の正規分布に従う確率変数pがp=0となる確率P(0)は?」と尋ねてみると分かってるかどうかがテストできます。P(0)=0と正しく答えられるかどうか。
 もし、あれれ? となる場合には[1]から、そんなの分かってると仰るのなら[2]からどうぞ。

[1] 「確率変数xが確率密度関数φ(x)に従う」とは、Δaがうんと小さい正の実数のとき、mΔa≦x<(m+1)Δa(すなわちx∈[mΔa,(m+1)Δa))となる確率をP(x∈[mΔa,(m+1)Δa))と書くと
  lim[Δa→0] P(x∈[mΔa,(m+1)Δa))= φ(mΔa)Δa
だってことです。特にxが一様分布φ1(x)に従うのであれば、
  lim[Δa→0] P(x∈[mΔa,(m+1)Δa))= φ1(mΔa)Δa
である。
 さて、x∈[mΔa,(m+1)Δa)であるとします。このとき、z=x+yの分布はどうなるか。ただしyがφ1(y)に従い、しかもyはxとは独立である。簡単ですね。y=z-aなのだから、もちろんzは φ1(z-mΔa)に従う。
 言い換えれば、x∈[mΔa,(m+1)Δa)であって、Δbがうんと小さい正の実数のとき、nΔb≦z<(n+1)Δbとなる条件付き確率は
  P(z∈[nΔb,(n+1)Δb) | x∈[mΔa,(m+1)Δa)) = φ1(nΔb-mΔa)Δb
です。だからz∈[nΔb,(n+1)Δb)となる確率は
  P(z∈[nΔb,(n+1)Δb)) = lim [Δa→0] Σ{n=-∞〜∞} P(z∈[nΔb,(n+1)Δb) | x∈[mΔa,(m+1)Δa)) P(x∈[nΔa,(n+1)Δa))
   = lim [Δa→0] Σ{n=-∞〜∞} φ1(nΔb-mΔa)Δb φ1(nΔa)Δa
   = ∫{a=-∞〜∞} φ1(nΔb-a)Δbφ1(a) da
と書ける。zが従う確率密度関数をφa(z)とすると、
  lim[Δb→0] P(z∈[nΔb,(n+1)Δb)) = φa(nΔb)Δb
なので、
  lim[Δb→0] (φa(nΔb) - P(z∈[nΔb,(n+1)Δb))/Δb )= 0
つまり
  φa(b) - ∫{a=-∞〜∞} φ1(b-a)φ1(a) da
ここでbをz, aをxに書き換えてみると
  φa(z) = ∫{x=-∞〜∞} φ1(z-x)φ1(x) dx
となります。

[2] 一般に、
   (f*g)(z) = ∫{x=-∞〜∞} f(z-x)g(x) dx
を 「fとgの畳み込み(convolution)」と呼びます。
 なお、(f*g) = (g*f) が成り立つことは容易に証明できます。畳み込みは信号処理・画像処理における「フィルター」、制御工学における「伝達関数」の作用を表すのにも使われる、とても重要な概念です。
 これを使って、

定理:「確率密度関数f(x)に従うxと、xとは独立で確率密度関数g(y)に従うyについて、z=x+yは確率密度関数(f*g)(z)に従う」
 (これは、上記[1]の計算をfとgを使ってやり直してみれば証明できるでしょ。)

[3] では、確率密度関数f(x)に従うxと、xとは独立で確率密度関数g(y)に従うyについて、t=xyはどんな確率密度関数に従うか。
 t=xyの両辺の対数をとって
  ln(t) = ln(x) + ln(y)
とし、ln(t), ln(x), ln(y)をそれぞれ T, X, Yという確率密度関数だと考えれば、「確率密度関数f(X)に従うXと、Xとは独立で確率密度関数g(Y)に従うYについて、T=X+Yは確率密度関数(f*g)(T)に従う」わけです。
 xがφ1(x)に従うとき、X = ln(x)がどんな確率密度関数fに従うか。これは簡単でしょうからご自分で。Tが従う確率密度関数は(f*f)(T)です。あとは t = exp(T) がどんな確率密度関数に従うか、という問題を解けば、おしまいです。

 「分かりやすい」をお求めですけど、すらすら行かない場合でも、少なくとも2〜3日ぐらいは粘ってみて下さいな。七転八倒することが地力を付けること。こんなの慣れちまえば鎧袖一触です。

かのご質問ではコタエばかりが求められており、かつ、あんまり適切な回答がないようなので、結果だけをカキコしたのでしたが、こりゃ、セキニンとらんといかんですかね。

 正規分布を日常的に使っているくせに、意味がよく分かってない人がちょいちょいいます。「平均0、分散1の正規分布に従う確率変数pがp=0となる確率P(0)は?」と尋ねてみると分かってるかどうかがテストできます。P(0)=0と正しく答えられるかどうか。
 もし、あれれ? となる場合には[1]から、そんなの分かってると仰るのなら[2]からどうぞ。...続きを読む

Q正規分布の加法性について

すいません。統計学初学者です。
正規分布の加法性でわからないことがございます。

1.N(u1, σ1^2) + N(u2, σ2^2) → N(u1 + u2, σ1^2+σ2^2)
2.N(u1, σ1^2) - N(u2, σ2^2) → N(u1 - u2, σ1^2+σ2^2)

正規分布を足しても引いても、
平均はそれぞれ、足されるあるいは引かれますが、
なぜ、分散だけはどちらも足されるのでしょうか?
分散は引くことは出来ないものなのでしょうか?

よろしくお願いいたします。

Aベストアンサー

>分散を引いたときと足したとき、分散の値は同じ。

根本的な誤解があります。質問者さんが参考にしている本も私たちも分散の引き算を、
さらには分布の引き算を論じているわけではありません。2つの確率変数X,Yの和、差の
結果として(X-Y)の分布、分散がどうなるかを論じています。この二つは全く違う議論です。

確率変数は何らかの分布に従ってはいても実態は具体的な数字です。
サイコロの出目であったり、#3で例としてあげたコインの枚数であったり、
工場で作れらる製品の不良品の数であったり様々ですがあくまでただの数字であり、
分布では有りません。ただ、その出現頻度が何らかの法則に従っているだけです。
この具体的な数字、例えば大きなサイコロと小さなサイコロを振って大きいサイコロの
出目から小さいサイコロの出目を引くといったことを考えるのが確率変数の引き算で、
その結果がどのような分布に従うことになるかを今、論じているのです。

さらに分かり易い(?)例を考えてみると、A社の200g入り牛乳の実重量が正規分布(203,1)に
従っているとします。ここから2本ずつ取り出してそれぞれの重量の差を求めてみます。
その結果が(0,0)、つまり全部0、どれも差がなかったことになると思いますか?
重いものから軽いものを引くこともあるし、軽いものから重いものを引くこともあり
結果として差は正規分布(0,2)に従うことになりますよ、と言っているのが参考書ですし、
回答者みなさんなのです。

もちろん、分散を引く計算を問題にすることも出来ます。
重量が正規分布に従うコップが有ってここに重量が正規分布(100,5)に従う水を
入れたら全体の重さは正規分布(120,8)に従った。元のコップの分布を求めよ。
これなら分散を引いて答えは(20,3)になります。しかしこれは確率変数の差を
求めているわけではないのですよ。

>分散を引いたときと足したとき、分散の値は同じ。

根本的な誤解があります。質問者さんが参考にしている本も私たちも分散の引き算を、
さらには分布の引き算を論じているわけではありません。2つの確率変数X,Yの和、差の
結果として(X-Y)の分布、分散がどうなるかを論じています。この二つは全く違う議論です。

確率変数は何らかの分布に従ってはいても実態は具体的な数字です。
サイコロの出目であったり、#3で例としてあげたコインの枚数であったり、
工場で作れらる製品の不良品の数であったり様々...続きを読む

Q±4σに入る確率について教えてください

ウィキペディアの検索より、
確率変数XがN( μ, σ2)に従う時、平均 μ からのずれがσ以下の範囲にXが含まれる確率は68.26%、2σ以下だと95.44%、さらに3σだと99.74%となる。
と分かりました。

そこで
4σ、


の場合確率はどうなるか教えてください。
よろしくお願い致します。

Aベストアンサー

Excel で NORMDIST を使い、平均 50、標準偏差 10 (いわゆる偏差値)で計算してみましたら、次のようになりました。

 σ 0.682689492137086
2σ 0.954499736103641
3σ 0.997300203936740
4σ 0.999936657516326
5σ 0.999999426696856
6σ 0.999999998026825
7σ 0.999999999997440
8σ 0.999999999999999
9σ 1.000000000000000

Excelの関数の精度がどの程度のものか分かりませんが、9σで100%になりました。

Q確率変数の和の問題

確率変数の和の問題です。

2つの確率変数XとYが、互いに独立に一様分布に従うとするとき、
確率変数X+Yはどのような分布の形状になるのでしょうか?

結局、和も一様分布になるのでしょうか?分からなくなってしまいました。
教えて下さい。

Aベストアンサー

連続型でピンとこないなら、離散型で考えてみれば?例えばサイコロを1個振るでしょ。1から6に一様(離散なので一様的)に出るね。2回振って和を取ると、平均3.5*2=7だけど2から12が一様的には出ないよね。
元問題を正確に解くと、確率変数X,Yの確率密度関数をf(x),g(y)として。確率変数Z=X+Yの確率密度関数をh(z)とすると。
h(z)=∫[-∞,∞]f(z-y)g(y)dy または h(z)=∫[-∞,∞]f(x)g(z-x)dx を計算すればよい。
問題よりf(x)=1 (0≦x≦1),g(y)=1 (0≦y≦1) なので 0≦z≦1のときyは0≦y≦z,1<z≦2のときz-1≦y≦1の範囲をとる。
0≦z≦1 のとき h(z)=∫[0,z]f(z-y)g(y)dy=∫[0,z]1・1dy=z
1<z≦2 のとき h(z)=∫[z-1,1]f(z-y)g(y)dy=∫[z-1,1]1・1dy=1-(z-1)=2-z

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q二つのガウス分布の畳み込み積分 得られるガウス分布の標準偏差σは?

二つのガウス分布の畳み込み積分についてお尋ねします。
標準偏差σ1、σ2をもつガウス分布F1、F2をF1*F2と畳み込むと、あるガウス分布Fが得られると思います。そのガウス分布Fの標準偏差σは
σ=sqrt(σ1^2+σ2^2)
で与えられるでしょうか。

Aベストアンサー

はい、その通り。

Q正規分布に従わないと標準偏差の算出は向かないでしょうか?

正規分布に従うとは、平均値の分布が多いという意味でしょうか?

日々変わるデータの点数が凸のような分布でなく、平均値付近が少ない
凹のようなデータの集合だと、標準偏差を算出し正規分布を使い
30%以下の人や70%以上の人を毎日抽出するような用途には
向かないのでしょうか?

Aベストアンサー

まず、正規分布に従うとは、「分布が正規分布のグラフと同じ形をする事」をいいます。
そのため、平均辺りが多くても△のような分布グラフだったり、
左右が対象でないと、「正規分布に従う」とは言いません。

そのため、試験の成績などは、「正規分布に近い」だけであって、
「正規分布に従っている」のではありません。

つまり、「偏差値」を使うべきかどうかは、偏差値の「分かりやすさ」と、
その分布が正規分布に近いかどうかの判断になります。



例えば、凹のようなデータでも、両端がなだらかになっていれば、そこそこ偏差値も使えます。

逆に、両端が崖のようになっていると、偏差値を使うのは控えた方がいいでしょう。
(たとえば、30点や、80点の人は多いけど、29点以下や、81点以上がいないなど)

また、分布が左右対称でない場合も、使用をやめた方がいいでしょう。
平均値と、中央値(順位が真ん中の人の値)が離れると、偏差値の感覚的な値とは
ずれてきます。



いずれにしても、ある程度のデータがあるのであれば、そのデータで
やってみるのが一番です。

出るべき結果と大きなずれがなければ、分かりやすいので使ってしまっても
いいのではないでしょうか。

試験の結果なんかでも、山が二つあったり、左右に偏っている事なんて
よくあります。

それでも、偏差値が、それなりに機能していますから、まずはやってみるのが
いいのではないかと思います。

まず、正規分布に従うとは、「分布が正規分布のグラフと同じ形をする事」をいいます。
そのため、平均辺りが多くても△のような分布グラフだったり、
左右が対象でないと、「正規分布に従う」とは言いません。

そのため、試験の成績などは、「正規分布に近い」だけであって、
「正規分布に従っている」のではありません。

つまり、「偏差値」を使うべきかどうかは、偏差値の「分かりやすさ」と、
その分布が正規分布に近いかどうかの判断になります。



例えば、凹のようなデータでも、両端がなだら...続きを読む

Qランダム関数の足し算とかけ算

検索しても情報が見つからなかったので教えてください。


Excelには、-1~+1までの間でランダムに数値を返す、RND関数がありますが、

RND + RND が返す値は-2~+2までの間でランダムな数となるのでしょうか?


また、RND × RND が返す値はどのような分布になるのでしょうか?

Aベストアンサー

数学的にはどうなるか。0~1の一様乱数になっているx, yであって、しかもxとyが互いに独立(一方は、他方が幾らであるか、ということとは無関係である)とします。

 「0~1の一様乱数」ってのは、その確率密度関数をφ1(t)とすると、
  φ1(t) = (0≦t<1のとき1, さもなくば 0)
となっているということ。つまり、ヒストグラムを描けば「0≦t<1のとき一定値1であり、それ以外のtについては0である」ということです。(Fig 1赤)

 x + y の確率密度関数をφa(t)とすると
  φa(t) = (0≦t<1のときt, 1≦t<2のとき1-t, さもなくば 0)
になります。ヒストグラムを描けば二等辺三角形になっている。(Fig1青)

 x × y の確率密度関数をφm(t)とすると
  φm(t) = -ln(t)
となります。ここにln( )は自然対数です。(Fig1緑)

 それぞれの分布関数
  Φ(x) = ∫{t=0~x} φ(t) dt
を計算すると、
  Φ1(x) = (x<0のとき0, 0≦x<1のときx, 1≦xのとき1)  (Fig 2赤)
  Φa(x) = (x<0のとき0, 0≦x<1のとき(x^2)/2, 0≦x<1のとき(2-(x-2)^2)/2, 2≦xのとき1)  (Fig 2青)
  Φm(x) = (x<0のとき0, 0≦x<1のとき(1-ln(x))x, 1≦xのとき1)  (Fig 2緑)

数学的にはどうなるか。0~1の一様乱数になっているx, yであって、しかもxとyが互いに独立(一方は、他方が幾らであるか、ということとは無関係である)とします。

 「0~1の一様乱数」ってのは、その確率密度関数をφ1(t)とすると、
  φ1(t) = (0≦t<1のとき1, さもなくば 0)
となっているということ。つまり、ヒストグラムを描けば「0≦t<1のとき一定値1であり、それ以外のtについては0である」ということです。(Fig 1赤)

 x + y の確率密度関数をφa(t)とすると
  φa(t) = (0≦t<1のときt, 1≦t<2のとき...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報