
図のような振り子の運動で、物体がある高さまで上がった時、糸がたるんだとします。
その時のθの値をθmaxとした時、そのθmaxを求める問題です。
(Lは糸の長さ、Tは糸の張力、V0は接線方向の初速度です)
自分で解いて見たのですが、自信がないので、答案が合っているかどうか見ていただけないでしょうか。
まず、運動方程式を立てると
θ方向:mLθ"=-mgsinθ
L方向:mV^2/L=T-mgcosθ
(Vは接線方向の速度)
となり、さらにエネルギー保存則により
1/2(mV^2)+mgL(1-cosθ)=1/2(mV0^2)
これをL方向の運動方程式に代入すると
cosθ=(2gL-V0^2)/3gL+T/3gm
ここで、糸がたるむということはT=0ということなので
cosθ=(2gL-V0^2)/3gL
よってθ=arccos(2gL-V0^2)/3gL
このような解き方で合っているでしょうか。

No.2ベストアンサー
- 回答日時:
合っています。
ただ一ヶ所
>糸がたるむということはT=0ということなので
T=0ではたるみません。
物体の位置が支点の真上にあるときでもT=0であれば円運動を継続できます。T<0であれば支点の真上の円周上の位置を物体は通過できません。
「糸がたるむということはT<0に対応しているのでT=0のときの値を求めるとθmaxを求めることが出来る」
となります。
θmax=arccos(2gL-V0^2)/3gL
θmax=π/2の時を考えて見ます。
この点は支点と同じ高さです。この点まで上がってきて引き返す時T=0になリます。糸はたるみません。
この時Vo=√(2gL)です。
√(2gL)<Vo<√(5gL)であればどこかで糸がたるんでしまいます。円運動の最高点の角度は
θmax=arccos(2gL-V0^2)/3gL
です。この角度よりも大きい角度になれば糸はたるんでいます。
糸がたるんだ後の物体の運動は放物運動です。
Vo=√(5gL)であれば支点の真上の点でT=0です。糸はたるまずに円運動が続きます。
Vo>√(5gL)
であれば常にT>0で円運動が続いています。
解いてみたけれど正しいかどうか分からないというときはいくつかの角度でどういうことが起こっているかを調べて見るのがいいでしょう。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
人気Q&Aランキング
-
4
中心力、向心力、遠心力の違い...
-
5
地面衝突時の衝撃力
-
6
固有振動数は何で決まる
-
7
衝撃荷重の計算式
-
8
工業仕事と絶対仕事の違いについて
-
9
くさびの力の出力
-
10
物理の問題です。 垂直抗力を書...
-
11
「四次元」をイメージを出来る...
-
12
2物体の相対速度が0のとき。。。
-
13
三角台・運動の法則・力学 力学...
-
14
遠心力はなぜ見せかけの力と呼...
-
15
水底での浮力消失
-
16
斜面を下る物体の運動について
-
17
なぜ物体は動くのか
-
18
壁にぶつかった時の力
-
19
拘束力の仮想仕事の総和はなぜ...
-
20
紐をたるませて引っ張る力の計...
おすすめ情報
公式facebook
公式twitter