外出自粛中でも楽しく過ごす!QAまとめ>>

こんにちは。

K^3において、ベクトルの組(1,2,0)、(1,0,1)、(1,2、-1)が基底であることを示したいのですが、どのように示せばよいかわかりません。

基底の定義:
ベクトル空間Vのベクトルの組x1、x2、・・、xrがVの基底であるとは、次の2条件を満たすことである。
(BS1)V=<x1、x2、・・、xr>である。
(BS2)x1、x2、・・、xrは線形独立である。

定義にそのままあてはめればよいだけだとは思うのですが、実際何をすればよいのかがわかりません。

回答よろしくお願いします。

このQ&Aに関連する最新のQ&A

意味 独立」に関するQ&A: 独立試行の意味

A 回答 (2件)

K^3の3つのベクトルの組があるので、その線形独立を言えば十分である。


すなわち a・(1,2,0)+b・(1,0,1)+c・(1,2,-1) = 0 ⇒ a = b = c = 0 を言えばよい。
あとは, a・(1,2,0)+b・(1,0,1)+c・(1,2,-1) = (a+b+c,2a+2c,b-c) = 0 を解けばよい。 連立方程式を解いて a = b = c = 0 が求められる。
    • good
    • 3
この回答へのお礼

回答ありがとうございました。

お礼日時:2009/02/24 13:56

> 実際何をすればよいのか


>
まず、<…>と「線形独立」の意味を調べます。
    • good
    • 6

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q基底についての証明です(大至急)

大学での問題がわかりません。
R2を2次列ベクトルのなすベクトル空間、R3を3次行ベクトルのなすベクトル空間とし、R23を2×3行列のなすベクトル空間とする。
{a1,a2}をR2の基底、
{b1,b2,b3}をR3の基底とすると、
{a1b1,a1b2,a1b3,a2b1,a2b2,a2b3}はR23の基底となることを証明せよ。
よろしくお願いします。

Aベストアンサー

はいはいa1b1の意味が分かった。
ヒント:
     a1(s1b1+t1b2+u1b3)+a2(s2b1+t2b2+u2b3)=0
ならば{a1,a2}をR2の基底、
{b1,b2,b3}をR3の基底を用いてs1=t1=u1=s2=t2=u2=0を示す。

Q線形代数で部分空間かどうかの判定

R^2内の次の直線、曲線がR^2の部分空間かどうか判定せよ。

(1) y=3xを満たすベクトル[x;y]の全体
(2) y=2x+1を満たすベクトル[x;y]の全体
(3) y=x^2を満たすベクトル[x;y]の全体

…という問題で、本の答えはそれぞれ、

(1) 部分空間
(2) 部分空間ではない
(3) 部分空間ではない

…となっています。しかし、例題が載っていないので
どうやって解いたのかいまいち理解できていません。

多分、次の定理を使うんだと思います:
ベクトル空間Vの部分集合Wが部分空間であるための必要十分条件
(1) W=Φ
(2) a, b∈W ⇒ a+b∈W
(3) a∈W, λ∈R ⇒ λa∈W

Aをm×n行列とするとき、
W={x∈R^n | Ax=0}
はR^nの部分空間である。

…ここからは推測ですが、
(1)はyと3xが比例しているような関係で
「xのちょうど3倍がyになる」から部分空間なのですか?

(2)は+1があって原点を通らないので
部分空間じゃないのですか?
もし、y=2xだったら部分空間ですよね?
+1や-1が付くような場合はすべて
「部分空間じゃない」と考えてもいいですか?

(3)は原点は通っていても
yがxの二乗に比例しているので
部分空間じゃないんですよね(倍数では表せないので)?

宜しくお願いします。

R^2内の次の直線、曲線がR^2の部分空間かどうか判定せよ。

(1) y=3xを満たすベクトル[x;y]の全体
(2) y=2x+1を満たすベクトル[x;y]の全体
(3) y=x^2を満たすベクトル[x;y]の全体

…という問題で、本の答えはそれぞれ、

(1) 部分空間
(2) 部分空間ではない
(3) 部分空間ではない

…となっています。しかし、例題が載っていないので
どうやって解いたのかいまいち理解できていません。

多分、次の定理を使うんだと思います:
ベクトル空間Vの部分集合Wが部分空間であるための必要十分条件
(1) W=...続きを読む

Aベストアンサー

まず、質問者さんが「次の定理」と呼んでいるのは多分「定理」じゃなくて「定義」です。
定理と定義の違いは重要です。
(1)は W = Φ じゃなくて、W ≠ Φ と言いたいのを間違えたんですよね?
問題に与えられた3つの図形は明らかにΦじゃありません。
では、問題に与えられた各図形が
(2) a, b∈W ⇒ a+b∈W
(3) a∈W, λ∈R ⇒ λa∈W
を満たすかどうか考えて見ましょう。
良いですか? どちらか片方じゃなくて両方満たさなくては部分空間とは言えないんですよ。
逆に言うと、どちらか片方でも満たさなければ部分空間ではないわけです。

まず(1)の図形:
二つのベクトル a = (x_1,y_1) と b = (x_2,y_2) が W の元だとしましょう。これは、y_1 = 3x_1, y_2 = 3x_2 が成り立つという事です。
では、a + b = (x_1 + x_2,y_1 + y_2) はどうでしょう?
もし、
y_1 + y_2 = 3(x_1 + x_2)
が成り立てば、性質(1)が満たされる訳ですが、成り立たないときは満たされない訳です。
次に、性質(2)はどうでしょう。
λa = (λx_1,λy_1) ですから、
λy_1 = 3(λx_1)
が成り立てば、性質(1)が満たされ、成り立たない場合は満たされないわけです。

次に(2)の図形…
a = (x_1,y_1), b = (x_2,y_2) が(2)の図形にあるのは、
y_1 = 2x_1 + 1 と y_2 = 2x_2 + 1
が満たされるときです。このとき、
a + b が性質(1)を満たすとは、
y_1 + y_2 = 2(x_1 + x_2) + 1 が成り立つという事です。
これは本当ですか?

(3)の図形も同じように考えてみましょう。

ところで、質問者さんは例題が本に載っていないと仰いますが、先生は授業中に例題を見せてくれませんでしたか?

***********************
**本当に授業を真面目に聞いていましたか?**
***********************

それから、次回こういう質問があったらネットで聞いたりしないで、先生のところに聞きに行きましょう。
必ず、よろこばれますから。
先生って、質問に来てくれる学生はかわいいもんです!

まず、質問者さんが「次の定理」と呼んでいるのは多分「定理」じゃなくて「定義」です。
定理と定義の違いは重要です。
(1)は W = Φ じゃなくて、W ≠ Φ と言いたいのを間違えたんですよね?
問題に与えられた3つの図形は明らかにΦじゃありません。
では、問題に与えられた各図形が
(2) a, b∈W ⇒ a+b∈W
(3) a∈W, λ∈R ⇒ λa∈W
を満たすかどうか考えて見ましょう。
良いですか? どちらか片方じゃなくて両方満たさなくては部分空間とは言えないんですよ。
逆に言うと、どちらか片方でも満たさなければ部...続きを読む

Q像と核の基底と次元を求める問題がわかりません。

f(x、y)=(x-2y、2x+y、3x-y)
という問題です。
基本変形をして

|1 -2|   |1 -2|
|2  1 |→ |0  5|
|3 -1|   |0  5|

となりImf=<t(1,2,3)> 次元=1
であってるか分かりませんが、Kerfが分からないので求めてください。

Aベストアンサー

質問文中で、階段化はできていますよね?
これを見れば、表現行列の rank は 2
であることが判ります。

像の次元は、rank と等しいので、2。
行列の列数が 2 で、次元と同じですから、
像の基底は、列を取り出して並べるだけ。
何も考える必要がありません。

核の次元は、行列の行数-rank なので、1。
一次元だから、核の基底は、行列を掛けて零
になる列ベクトルを一つ求めればよく、
それらが一次独立かどうかを気にせず済みます。
単に、連立一次方程式を解くだけです。

Q行列・対角化可能の条件は?

行列で対角化可能の時の条件を教えて下さい。
問題で固有値、固有ベクトル、対角化可能の場合は対角化する正則行列を求めよ、とあります。
3×3行列で固有値が3つ、全て異なる場合は対角化可能。
固有値が1つ(3重解)の場合は対角化不可。
では、固有値が2つの場合は対角化可能と不可の場合がありますが、これはどのようにして見分けるのでしょうか?
例えば

   -3 -2 -2
B=[ 2  1  2  ]
    2  2  1

 の時、固有値は1、-1(重解)ですが対角化可能です。なぜでしょうか?宜しくお願いします。

Aベストアンサー

きりがないので前後の文脈から書き間違いを訂正してください。

3×3行列が正則行列で対角化可能であるための必要十分条件は「3つの独立な固有ベクトルを持つこと」です。
相異なる3つの固有値を持てば3つの独立な「固有ベクトル」を持つので対角化可能です。

2つの相異なる固有値しか持たない場合の例:
000
010
001
は対角化可能であり
000
011
001
は対角化不可能である。
1つの固有値しか持たない場合:
100
010
001
は対角化可能であり
110
010
001
は対角化不可能である。


従って
固有値が1つ(3重解)の場合は対角化不可。
はうそです。

Q正規直交基底であることの確認

ベクトル U1=(1,1,0) U2=(1,3,1) U3= (2、-1、1)とし、正規直交基底 Q1,Q2,Q3を求めろ。
という問題で、Q1=1/√2(1,1,0)Q2=1/√3(-1、1,1)Q3=1/√6(1、-1、2)と答えは求めたのですが、
次の問題が「Q1,Q2,Q3が正規直交基底であることを実際に確認せよ。」というものでした。
正規直交基底であることを確認するにはどうすればよいのでしょうか。

Aベストアンサー

(1)正規であること⇒「Q1、Q2、Q3の絶対値が1」を確かめる。
 (X1,X2,X3)^2 = X1^2 + X2^2 + X3^2 = 1 を見ればよい。
 ex. Q1^2= (1/√2)^2 + (1/√2)^2 = 1 以下同様に…
 
(2)直交であること⇒内積(Q1・Q2)、(Q2・Q3)、(Q3、Q1)がいずれも0であることを確かめる。
 ex. (Q1・Q2)=(1/√2)・ (-1/√3)+(1/√2)・(1/√3)+(0)・(1/√3)=0 以下同様に…
深夜、頑張ってますね!

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q表現行列の求め方

行列
1 2 -1 4
0 1 2 3
2 3 -4 5
に対応する線形写像f:R4→R3について
R4の標準基底{e1,e2,e3,e4},R3の基底{(1 1 2),(3 5 4),(1 1 1)}に関するfの表現行列
はどうやって求めたらいいのでしょうか。
試験が近いのですがこのあたりがよく分からなくて詰まっています。
よろしければ回答お願いします。

Aベストアンサー

質問冒頭の行列が、R4, R3 各標準基底上の
f の表現行列です。これを F と名付けましょう。
所与の R3 の基底を列ベクトルとして並べた
行列を P と置くと、求める行列は、
行列積 (Pの逆行列)F で表されます。
R4 の側も別に基底を指定するようなら、
その基底を列ベクトルとして並べた
行列を Q と置いて、求める行列は、
(Pの逆行列)FQ です。
今回は、Q が単位行列ですね。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング