ママのスキンケアのお悩みにおすすめアイテム

ミラー積分器とは積分器の一種でミラー効果により入力容量が増大することを利用したもの、であることは分かったのですが、
具体的にどういうものなのでしょうか?
どなかた簡単に教えて頂けないでしょうか?

A 回答 (2件)

ミラー(Miller)は人名で,3極真空管の入力容量が,グリッド(入力)-プレート(出力)間の帰還容量に影響されること(ミラー効果)を発見した人です.


ミラー積分器はミラー効果にちなんで名付けられています.
http://en.wikipedia.org/wiki/Miller_effect
具体的な回路と解析は上記に載っています.
    • good
    • 2

アンプの出力からそのアンプの反転入力にコンデンサでフィードバックしたものなのでオペアンプを使った普通の積分器はミラー積分器です。



ミラー積分器でない積分器の例としては定電流回路でコンデンサを充放電する回路があります。
    • good
    • 0
この回答へのお礼

ありがとうございます。

でももう少し詳しい解説を頂けないでしょうか?

ミラーとはmillerで鏡の意味ではないことは分かるのですが、ミラーの定義は何なのでしょうか?
ミラー効果である、ない、というのはどこで判断するのでしょうか?

お礼日時:2009/02/22 15:32

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qマルチバイブレータについて

各マルチバイブレータについてのご質問になりますが、非(無)安定マルチバイブレータ、単マルチバイブレータ、双安定マルチバイブレータの、各それぞれの応用例を、教えてくださいm(__)m。
どういったものに使用されているのか教えてください。
是非お願いいたしますm(__)m。

Aベストアンサー

こんにちは。
非安定マルチ→発振回路、分周回路

  あまり高い安定度を必要としない周波数源として使われる事が多いよう
  です。またベース(ゲート)回路に発振周波数の整数倍の周波数を入力
  すると入力信号に同期した整数分の一の方形波を取り出す事ができます。

単安定マルチ→トリガパルス整形回路を動作させる信号をアナログ信号から
  パルスを作るチャタリング防止接点などの振動で細かい沢山のパルスが
  発生したとき、単安定マルチの時定数以下の細かいチャタリングパルス
  をキャンセルできる。

双安定マルチ→計数回路、分周回路、記憶回路、方形波への波形整形
  コンピューターで一番使われてる回路はこれでしょうね。

こんなところでいかがでしょうか。

Qオシロの入力インピーダンスについて

私の使っているオシロスコープは入力インピーダンスを
50Ωと1MΩに切り替えることができるのですが、切り替えたらどうなるのかよくわかりません。
マニュアルには観測できる垂直軸(電圧)の領域が1MΩのほうが大きいとしか書いてないです。
同じシグナルを入力したときに50Ωと1MΩとでは波形が違うみたいです。
切り替えると何が起こるのでしょうか?
よろしくお願いします。

Aベストアンサー

50Ω

信号は電力伝送されますから
あまり強い信号を入力してはいけません。
測定相手が50Ω系であれば、配線を切って
オシロに接続することで、反射の無い
きれいな(本来の)波形を観測することができます。
また、50Ωだと受け側は純抵抗に近くなりますから
容量成分で生じる不都合(スパイクなど)も
発生しません。
ただし、配線を切れないところの測定には適しません。
(こちらに電流が流れてしまうため)

1MΩ

信号はハイインピーダンス受けとなりますから、
配線を負荷につないだままで、
もしくは回路の途中からでも信号を取り出して
波形を観測することができます。
しかし、ハイ受けですから、回路に多少影響を
与えます。
また、出力回路のような処では
別に終端抵抗を必要とします。
そしてインピーダンスは高くても
プローブの容量成分(20pFぐらいかな)は
そのまま残りますから
波形に乱れが生じる場合もあります。

なお、オシロの回路は、1MΩ受けに造られていて
50Ωの時は入力端に抵抗が挿入されるように
作られているはずです。

50Ω

信号は電力伝送されますから
あまり強い信号を入力してはいけません。
測定相手が50Ω系であれば、配線を切って
オシロに接続することで、反射の無い
きれいな(本来の)波形を観測することができます。
また、50Ωだと受け側は純抵抗に近くなりますから
容量成分で生じる不都合(スパイクなど)も
発生しません。
ただし、配線を切れないところの測定には適しません。
(こちらに電流が流れてしまうため)

1MΩ

信号はハイインピーダンス受けとなりますから、
配線を負荷につないだ...続きを読む

Qオシロスコープについて(プローブの10:1)

掲題の件について教えて下さい。
プローブに10:1の切り替えがついています。
1.これは何のためについているのですか?
2.×10にスイッチを切り替えるとオシロスコープに表  示される値を×10にするのですか?

宜しくお願い致します。

Aベストアンサー

どこかでアッテネ-タプロ-ブの内部構造と
オシロ側の回路をR、Cの関係で簡略化した
図を見てもらうと分かりやすいと思います。


(簡略化して説明すると以下のようになります)
 入力信号に対して、リード線やオシロに
容量の成分があります。コンデンサが並列に
入った回路と同じなので、ローパスフィルターの
ように働きます。
 矩形波や三角波など、正弦波の合成であり
周波数成分があります。
 入力される信号の周波数により、
このコードやオシロ内部の回路の容量から
なるフィルター回路の影響で、周波数成分が
変わり、オシロで見ていると波形が歪んで
しまいまうのです。

 プローブ側には直列にコンデンサが
入っており、これがハイパスフィルター
の役目をします。
 またプローブ側には並列に容量が換えられる
トリマーコンデンサーが入っているので、
この容量を調整することで、ローパスと
ハイパスのバランスがとれ、各周波数成分の
振幅を一定にでき、これにより矩形波などの
周波数成分のバランスが崩れなくなるので、
波形が歪まなくなります。
 ただ、バランスをとるために周波数
全体の振幅は下がることになります。
 どのくらい下がるかは回路によりますが、
測定しやすいよう、10分の1になるように
してあるのです。
 
>1.これは何のためについているのですか?

 以上のように、周波数や波形の条件に
より、オシロの表示波形が歪んでしまう
場合、10:1のほうにすると、プローブ
のところについているトリマーコンデンサー
をまわすことにより、波形の歪みを補正できるのです。

>2.×10にスイッチを切り替えるとオシロスコープに 表示される値を×10にするのですか?

 最近オシロをいじっていないので、ちょっと
自信がありませんが、上の説明のとおり、
プローブを10:1のほうにしていると、
入力信号の振幅が10分の1になっています
から、オシロのほうを×10にするというのが、
振幅を10倍にして見ているのだとすると、
そのままの読みが正しい測定値になると思います。

どこかでアッテネ-タプロ-ブの内部構造と
オシロ側の回路をR、Cの関係で簡略化した
図を見てもらうと分かりやすいと思います。


(簡略化して説明すると以下のようになります)
 入力信号に対して、リード線やオシロに
容量の成分があります。コンデンサが並列に
入った回路と同じなので、ローパスフィルターの
ように働きます。
 矩形波や三角波など、正弦波の合成であり
周波数成分があります。
 入力される信号の周波数により、
このコードやオシロ内部の回路の容量から
なるフィルター...続きを読む

Qブートストラップ回路について教えてください。

ブートストラップ回路について教えてください。
そもそもブートストラップの定義って何なんでしょうか?
専門書を見ているとモータのドライブ回路の上段にコンデンサとダイオードをつけてドライブ能力を向上させる等の説明が書かれているのですが…
また、初心者でもわかるようなサイトがあったら教えてください。

Aベストアンサー

ブートストラップとは、「靴をつかんで自分自身を引き上げる(持ち上げる)」から連想される操作の概念です。語源に関しての記述が下記にあります。コンピュータを対象に書かれていますが、電子回路に関しても同じ意図で用いられています。
http://www.yshimizu.com/itrd/sb2002/itrd-sb03.html
http://nobumasa-web.hp.infoseek.co.jp/boot/boot.html
http://www.shoeisha.com/book/pc/20c/chap02/gen.htm  囲み記事番号「※10」を参照

さてご質問の「ブートストラップ」の定義ですが、語源そのものが物理的に不条理なこともあり、厳密かつ網羅的には困難に思えます。「自分自身を持ち上げる」、その「自分」が何であるか必ずしも特定できないのです。「ブートストラップ」とは感覚的で漠然としたものではないでしょうか。しかし一方で、具体例をあげる事は容易です。

1.ハイサイドバイアス:
http://www.mitsubishichips.com/Japan/files/manuals/km0020a1.pdf
6ページの用例が貴方があげたものだと思います。ブートストラップ用コンデンサのおかげで上部FETのゲート電圧は電源電圧を越える事が出来るようになります。その結果、FETソース電圧を電源電圧まで上昇させる事が可能となります。

2.ブートストラップ発振器:
http://www.ipdl.ncipi.go.jp/FI-HB/H03K/H03K4_58_1.gif
ノコギリ波の発生回路です。Rを通してCが充電されます。Sを開くとCの電圧が徐々に上昇し、閉じるとCがリセットされるのでノコギリ波形が得られます。Cfが無い単純回路では、Cの電圧上昇に伴って充電電流が減少してしまうので、直線的なノコギリ斜面が得られません。そこに十分大きなCfでブートストラップ経路を設ければ、Cの電圧上昇に関わらず、R両端電圧は、ほぼCfの電圧に等しく一定に保たれます。すなわち充電が線形に持続し、歪の無いノコギリ波形が生成されるという具合です。

3.アクティブガード:
http://www.orixrentec.co.jp/tmsite/know/know_seald32.html
図4をご覧下さい。図中バッファアンプにより、シールド線外被は、芯線と同じ電圧になるようにブートストラップされます。結果、芯線外被間の電圧は零に保たれ、このシールド線が負荷として繋がれる者からみると、静電容量がキャンセルされている事になります。直流リーク電流の阻止にも効果があります。

4.バイアス回路
http://210.155.219.234/bootS.htm
入力保護ダイオードの容量キャンセル、コレクタ負荷の定電流化、入力ハイインピーダンス化などの説明があります。
http://eu11.stripper.jp/pulcino/blog/archives/000021.html
後段のトランジスタのバイアス部に使用されています。エミッタからの帰還(ブートストラップ)が、バイアス抵抗100kΩ、56kΩによる対GNDシャントインピーダンスをガードし、入力インピーダンスを高めています。

5.OPAMPの非反転増幅
非反転増幅を構成した際の、入力差動増幅部の動作に着目しましょう。負入力端子はアンプの出力に繋がれています。正入力側トランジスタのエミッタが、負入力側トランジスタによるエミッタフォロアによりブートストラップされていると解釈できる事にお気づきでしょうか。入力側のトランジスタのベース、エミッタ間に残る正味の信号が零になるまで、ブートストラップが働く結果、正入力端子信号電圧が出力に写し取られるのだという具合に、負帰還を捉えることもできるのです。

6.OPAMPの高電圧用途
http://www.yokogawa.co.jp/tm/TI/gihou/digital/sokutei.html
図15-6 をご覧下さい。OPAMP出力で電源をブートストラップしてあります。OPAMPの入出力端子と電源端子間は 15 V 以下でありながら、それ以上の信号振幅を扱う事ができます。

7.電源ポンプアップ(TV垂直偏向出力部の回路)
http://industrial.panasonic.com/www-data/pdf2/AFA7000/AFA7000CJ2.pdf
6ページをご覧下さい。偏向コイルのドライブには一時的に高い電圧を必要とします。常に高い電源電圧をドライブアンプに使用すると損失が大きいので、必要な瞬間(帰線期間)だけドライブアンプの電源電圧を上げてやろうという仕掛けです。電源電圧に、3-6 間コンデンサに用意された電圧の下駄を履かせるよう、図中 PUMP UP 回路が動作します。

以上、「ブートストラップ」に関する心当たりを列挙してみました。

ブートストラップとは、「靴をつかんで自分自身を引き上げる(持ち上げる)」から連想される操作の概念です。語源に関しての記述が下記にあります。コンピュータを対象に書かれていますが、電子回路に関しても同じ意図で用いられています。
http://www.yshimizu.com/itrd/sb2002/itrd-sb03.html
http://nobumasa-web.hp.infoseek.co.jp/boot/boot.html
http://www.shoeisha.com/book/pc/20c/chap02/gen.htm  囲み記事番号「※10」を参照

さてご質問の「ブートストラップ」の定義ですが、語源そのものが物理...続きを読む

Qリップルについて

出力電流を大きくするとリップル電圧が大きくなるのはどうしてですか?また,リップル率が大きいと何が不都合なのでしょうか?よろしくおねがいしますm(_ _)m

Aベストアンサー

1.>出力電流を大きくするとリップル電圧が大きくなるのはどうしてですか?

先ず半波整流回路で説明します。
http://www.picfun.com/partpwr.html
上から1/4くらい・・・[整流平滑回路]の(1)半波整流回路 のところを見てください。
(この回路図は不十分です。本当は、[Vout]と[0]の間に負荷がつながります。これを仮に[R1]とします)

もし、コンデンサ(C1)がないと、出力には「整流直後の波形」のような波形が現われます。(リプル率100%)
C1があると、入力電圧が下降のサイクルに入っても、”コンデンサから電流が供給される”ので、電圧はあまり下がらず、「平滑後の直流波形」中の赤線のようになります。
(この図は、ほぼリプル率50%です)

コンデンサの容量が十分大きいと、谷の部分がほとんどなくなります。(リプル0に近付く)
コンデンサの容量が小さいと、直ぐに放電仕切ってしまい、間に電圧0Vの箇所ができることがあります。

この図からおわかりのように、コンデンサC1の容量が同じ場合、負荷抵抗R1が小さいと、大電流が流れるので、放電が早くリプルは大きくなります。
リプルを同じにするためには、大きい容量のコンデンサが必要です。

両波整流の場合は、同じ容量のコンデンサでも、放電しきらないうちに次の整流出力が供給されるので、リプルは小さくなります。
(同じリプルにするには、容量は小さくてよい)

リプルについては、下記のQ/Aもご参照ください。
もう少し詳しく解説しています。
http://security.okwave.jp/kotaeru.php3?q=2129380

2.>リップル率が大きいと何が不都合なのでしょうか?

オーディオアンプではハム(ノイズ)の原因になります。
ただし、アンプ回路にはデカップリング回路があり、更にリプルを減少させる機能があるので、通常数V以下なら問題になりません。
(プリアンプであればもっと厳しい)

また、リプルがあるということは、電源電圧が低いのと同じであり、最大出力の確保ができなくなります。
(オーディオアンプでも無線送信機でも同じ)

一般に、アンプの出力と電源電圧の関係は、
  W=Vcc^2/8RL
の関係で表されます。ただし、
  W:最大出力
  Vcc:電源電圧
  RL:負荷抵抗

例えば、負荷抵抗8Ωで100Wの出力を出すためには、80Vの電源が必要です。

ここで、整流後の尖頭電圧100V,リプル率30%の電源は、谷間で70Vになってしまうので、100W出力は出せません。
コンデンサの容量を上げて、リプル率20%にしてやれば、谷間でも80Vあり、最大出力100Wが確保できます。

ANo.2の方が言っておられるレギュレータ問題も同じです。
例えば、マージン1.0Vが必要な、出力8Vの3端子レギュレータは、入力9.0Vを確保してやらなければなりません。

整流後の尖頭電圧10.0Vでリプル率20%では、谷間で8.0Vとなりレギュレータの役目をしません。
コンデンサの容量を上げて、リプル率10%以下にする必要があります。

参考URL:http://www.picfun.com/partpwr.html

1.>出力電流を大きくするとリップル電圧が大きくなるのはどうしてですか?

先ず半波整流回路で説明します。
http://www.picfun.com/partpwr.html
上から1/4くらい・・・[整流平滑回路]の(1)半波整流回路 のところを見てください。
(この回路図は不十分です。本当は、[Vout]と[0]の間に負荷がつながります。これを仮に[R1]とします)

もし、コンデンサ(C1)がないと、出力には「整流直後の波形」のような波形が現われます。(リプル率100%)
C1があると、入力電圧が下降のサイクルに入っても、”コンデン...続きを読む

Q電気・電子回路のバッファについて

電気回路にバッファというものがありますが、これはどのような働きをしているのですか?(74LS~ とか) 安定化のためにあるようですが…
詳しく教えて頂けませんでしょうか。

Aベストアンサー

バッファー(Buffer)は日本語に直訳すれば緩衝増幅器になります。緩衝増幅器は電流(波形)の増幅、電圧(波形)の増幅や整形、出力インピーダンス変換(高出力インピーダンスを低インピーダンスや整合インピーダンスに変換)のために挿入されます。回路1の出力を回路2の入力に接続する時、回路2を接続した影響が回路2に及ばなくしたり、出力波形の整形や出力インピーダンスを変換します。
ディジタル回路では出力用のバッファーでは
1)出力電流増幅、2)出力インピーダンスを下げる、3)論理レベル(1や0に対応する電圧)の電圧レベル調整・波形整形、が目的で
1)と2)はファンアウト増やす機能です。出力のタイプはオープンコレクター(オープンドレイン)、3ステート、単にファンアウトが大きいものがあります。
入力用バッファーでは、1)雑音や論理レベルが明確でないデジタル信号の波形整形(論理1と論理0の明確な信号に再生)、2)後続の回路の負荷(ファンイン)を減らして前置回路への影響を少なくする。
といった目的で使われ、主に入力電圧振幅に対して出力電圧にヒステリシス特性を持つシュミット回路が採用されています。

バッファー(Buffer)は日本語に直訳すれば緩衝増幅器になります。緩衝増幅器は電流(波形)の増幅、電圧(波形)の増幅や整形、出力インピーダンス変換(高出力インピーダンスを低インピーダンスや整合インピーダンスに変換)のために挿入されます。回路1の出力を回路2の入力に接続する時、回路2を接続した影響が回路2に及ばなくしたり、出力波形の整形や出力インピーダンスを変換します。
ディジタル回路では出力用のバッファーでは
1)出力電流増幅、2)出力インピーダンスを下げる、3)論理レベル(1...続きを読む

Q微分回路、積分回路の出力波形からの時定数の読み方

微分回路、積分回路それぞれに方形波を入力し、出力波形をオシロスコープで観察したのですが、この出力波形から時定数をどのように読み取ればいいのでしょうか?

Aベストアンサー

CR微分回路の場合には、最大出力電圧の37%まで出力電圧が落ちるまでの時間が時定数になります。
CR積分回路では、最大出力電圧の63%まで出力電圧が上がるまでの時間が時定数になります。

Qエクセルを使用してデジタルフィルタのハイパスフィルタ・ローパスフィルタの掛け方を教えてください。

タイトルどおりなのですが、エクセルを使用してデジタルフィルタのハイパスフィルタ・ローパスフィルタをかけたいです。

ご存知の方、よろしくお願いします。

Aベストアンサー

わたしはわかりませんが、こんなページがありました。

エクセルを使用してデジタルフィルタのハイパスフィルタ・ローパスフィルタの掛け方を教えてください。
出来ましたらそのまま使える式をお願いいたします。

http://q.hatena.ne.jp/1204546061

Q閉ループゲイン 開ループゲイン

オペアンプの閉ループゲイン、開ループゲインとはそもそも何なのでしょうか?
根本的なとこがわかりません。
どなたかよろしくお願いします。

Aベストアンサー

[図6.1-41]を見てください。
これが開(オープン)ループゲインです。(青色)
(フィードバックをかけていないときの利得ー周波数特性)
http://my1.interlink.or.jp/~md0858/series4/densi0613.html

70Hzくらいまでは100dBの利得がありますが、より高い周波数では-6dB/oct(=-20dB/decade)でどんどん下がっていき、7MHzくらいで0dBとなります。
(最大利得と周波数特性はオペアンプの種類によって異なるが、この”傾向”はすべてのオペアンプについて言える)

[図6.1-43]を見てください。
例えば80dB(60dB)のフィドバックをかけたとすると、利得は20dB(40dB)になりますが、利得一定の周波数幅がうんと広くなることにお気づきでしょうか?
これが閉ループゲインです。

一般に、オペアンプの開ループゲインは100dB以上ありますが、これを開ループで使うことは滅多にありません。
周波数特性が問題にならないコンパレータのときくらいのものです。

参考URL:http://my1.interlink.or.jp/~md0858/series4/densi0613.html

[図6.1-41]を見てください。
これが開(オープン)ループゲインです。(青色)
(フィードバックをかけていないときの利得ー周波数特性)
http://my1.interlink.or.jp/~md0858/series4/densi0613.html

70Hzくらいまでは100dBの利得がありますが、より高い周波数では-6dB/oct(=-20dB/decade)でどんどん下がっていき、7MHzくらいで0dBとなります。
(最大利得と周波数特性はオペアンプの種類によって異なるが、この”傾向”はすべてのオペアンプについて言える)

[図6.1-43]を見てください。
例えば80dB(60...続きを読む

Qボルテージフォロワの役割がよく分かりません。

ボルテージフォロワは、電流が流れることで寄生抵抗によって電圧値が低下しないようにするために、回路の入力段及び出力段に入れるものであると思いますが、
これを入れるのと入れないのでは具体的にどのような違いが表れるのでしょうか?

オペアンプを使った回路では通常、電流は流れないはずですので、このようなものは必要ないように思うのですが、どのような場合に必要になるのでしょうか?

Aベストアンサー

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗にほぼ等しい。この抵抗の大きさはさほど大きくできない。)
非反転増幅回路を用いると、入力インピーダンスを大きくすることができます(非反転増幅回路の入力インピーダンスは非反転入力と反転入力のピン間インピーダンスにほぼ等しく、かなり大きな値になる。)が、増幅率が1よりも大きくなってしまいます。
これを元の信号のレベルに下げるために抵抗で分圧してしまうと、分圧に使用した抵抗分出力インピーダンスが増えてしまいます。これでは何のためにオペアンプを入れて電流の影響を減らしたの意味がなくなってしまいます。
元の電圧のまま、次の段に受け渡すにはボルテージフォロワがよいということになります。


次に、#1の補足に対して。
>反転増幅回路と非反転増幅回路は単に反転するかしないかの違いだと思っていたのですが、
>それ以外に特性が異なるのですか?
これは、上でも述べていますが、反転増幅回路と非反転増幅回路は、増幅回路の入力インピーダンスが異なります。
信号源の出力インピーダンスが大きく、電流が流れると電圧が変化してしまような用途では入力インピーダンスを高くできる非反転増幅が有利です。

>・出力インピーダンスとは出力端子とグラウンド間のインピーダンスだと思っていたのですが、それでいくと分圧するということは
>出力インピーダンスを下げることになるのではないのでしょうか?
違います。出力インピーダンスとは信号を発生させている元と入力先との間のインピーダンスを意味します。
出力インピーダンスは信号源から流れる電流による電圧降下の大きさを決定付けます。
オペアンプを使った回路での出力インピーダンスは、理想的な状態ですはゼロになります。
分圧用の抵抗を入れてしまうと、分圧に使用した抵抗のうち信号源と入力先に入っている抵抗分が出力インピーダンスとして寄与していしまいます。

>・それと非反転増幅回路の出力を抵抗などで分圧することで増幅率を1以上にするデメリットを教えて下さい。
これは、何かの勘違いですね。
非反転増幅回路で増幅率を1よりも大きくしたいのなら分圧などする必要はありません。
非反転増幅で増幅率を1以下にしたい場合は、何らかの方法で信号を減衰させる必要があります。ここで分圧を使うのはあまり好ましいことではないということです。

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング