『ボヘミアン・ラプソディ』はなぜ人々を魅了したのか >>

今統計学について勉強しているのですが記述統計学と推計統計学の違いがいまいちわかりません。
調べてみると以下のようなページをみつけたのですがやはりわかりません。ご存知の方ご教授お願いします。

http://digitalword.seesaa.net/article/36622474.h …

このQ&Aに関連する最新のQ&A

A 回答 (2件)

大学などで「記述統計学と推測統計学の違いを述べよ」という問題が試験に出るのでなければ、別に両者を明確に区別する必要なんてないと思いますよ。



一応、簡単にいえば記述統計学というのは複雑で大量のデータを整理すること。例えば、単純集計で表にまとめたり、そのデータを適切にグラフで表現するなどですね。

推測統計学(推計統計学)は標本値から母数を推定すること。原則として我々は母数をすることができないので、標本値から母数を推定することしかできません。その推定の「確からしさ」を考えるのが推測統計学です。

ちなみに、例えば、1人の身長データさえ母数を測定するのは不可能です。なぜなら、測定に伴う誤差(例えば測定誤差)が伴うからです。

母数を推定するというと、もっぱら何万人もいる人の集団のデータなんて想像してしまいがちですが、ただ1つの正確な観測値を得るのさえ我々にはできないんです(というのが統計学の考え方)。
    • good
    • 0

統計学の目的を、理解すること。



ある小学校の1年1組の児童の身長は、に対しては、記述統計学。
日本全体の1年生の身長なら、推計統計学。すなわち、記述統計学では無理な場合に、推計統計学を用いる。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Q統計学 t値の表を見るときの自由度

自由度Φ は (データ数-1) か、(データ数-2)のどちらを選ぶべきか、基準を教えて下さい。
t値の表を見るとき、迷っています。
データ数によってなのか、母平均に対応のあるないと関係があるのか・・・

Aベストアンサー

こんにちは.
t検定はその使用目的から三つの場合で自由度を見分ける必要があります.

1)ある条件の平均値と定数との差の検定の場合
 例えば,ある学級集団のIQが102であり,全国平均のIQ100よりも有意に高いといえるかどうか.このような場合にt検定を使う場合は次の計算で自由度を求めます.

 自由度=データ数-1

2)対応がない二つの条件の平均値の差の検定
 質問者さんは対応なし/ありの区別がついているようなので,以下簡単に説明をします.
 A条件で10人,B条件で8人のデータにおいてAとBの二つの平均値の差を調べる場合では次のようになります.

 自由度=Aデータ数+Bデータ数-2
 例) 16

3)対応がある二つの条件の平均値の差の検定
 この場合では,AB条件ともに同数データとなります.いまA条件データ数(=B条件データ数)が9とします.

 自由度=一方の条件データ数-1
 例) 8

Q質的データと量的データの相関について

例えば性別のような質的なデータとテストの点数などの連続変数からなる量的データの間の相関をみるということは出来るのでしょうか??統計の本には相関の結果が書いてあるのですが、結果の読み取り方と計算の仕方がわかりません。基本的な質問ですみませんが、どなたか教えていただけませんか??
宜しくお願いいたします。

Aベストアンサー

で・き・ま・す!!!
こんなこと、なかなか学校ではカリキュラムの中でなんか教えてくれないですよね。私も決して専門家ではないんですが、我流で考えました。(まー結果的には我流でなくて正統流だと自負しているんですが)

さて、本題。
ご質問の文中「質的なデータ」とおっしゃってますが、要は、これも不連続ではあるんですが、数に見立ててしまえばいいんですよ。

<例1>
2者(男と女)での性質の違いを調べたいとき
→数はなんでもよいんですが、例えば、男を1、女を2とすればよいです。

<例2>
3者のものを比べたいとき(男、女、オ○マの3種類とか)
→次の3通りについて、全部相関を調べればよいです。
・A群を1、B・C群を2
   →これで相関が出ればAに属するか否かによって性質が違うということが言えます。
・B群を1、A・C群を2 → 以下同文
・C群を1、A・B群を2 →  〃

Excelとかだと、「相関係数」が容易に関数として求めることができるので、ちょー簡単に分析できますよ。
相関係数というものは-1から+1までの値をとります。絶対値が1に近いほど相関あり、0に近いほど相関なしです。相関係数の絶対値だけが問題なので、男を1、女を2としても、その逆にしてもよいわけです。

私、日ごろ、当たり前のように、応用してますよ。

<実用例>
パンを焼く機械が3台ある工場で、製造不良数と使用機械との間に相関がないかどうか調べる。
この結果、特定の機械でつくったパンだけに不良が多い傾向が認められれば、その機械に対して対策を打つ・あるいは使用禁止にして、残り2台のみ稼動とする など。

以下、補足です。
このような3者以上の時って、結果的に相関係数が最大になるように、それぞれに対する「数値」を微妙に調整していくと理想的ですね。(←試行錯誤的な繰り返しになると思いますが)
例えば、3つの中でナンバー1がどれでワースト1がどれと決まり、さらには、両者の中間のは、どちらかというと他の2つのどちらに近いか、といったことまで判ります。だけど、ここまで分析するのは複雑だし時間がかかるので、私は実用的にはやっていません。前記のように3種類を2種類ずつ3通りに分けるだけで十分と思います。

で・き・ま・す!!!
こんなこと、なかなか学校ではカリキュラムの中でなんか教えてくれないですよね。私も決して専門家ではないんですが、我流で考えました。(まー結果的には我流でなくて正統流だと自負しているんですが)

さて、本題。
ご質問の文中「質的なデータ」とおっしゃってますが、要は、これも不連続ではあるんですが、数に見立ててしまえばいいんですよ。

<例1>
2者(男と女)での性質の違いを調べたいとき
→数はなんでもよいんですが、例えば、男を1、女を2とすればよいです。

...続きを読む

Qデータが正規分布しているか判断するには???

初歩的なことですが。。急いでいます。
おわかりになる方 教えてください。
サンプリングしたデータが正規分布しているかどうかを確認するにはどうすればよろしいでしょうか。
素人でも分かるように説明したいのですが。。
定性的にはヒストグラムを作り視覚的に訴える方法があると思います。今回は定量的に判断する方法を知りたいです。宜しくお願いします。

Aベストアンサー

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区間距離、度数区分数は、正規的なグラフになるように試行錯誤で行うことが多い(区間距離や度数区分数を本来の分布に則するようにいろいろ当てはめて解釈する。データ個数の不足や、データの取り方、または見かけ上の分布によりデータのばらつきが正しく反映されて見えないことがあるため)のですが、度数区分数は、機械的に、
=ROUNDUP(1+LOG10(データ個数)/LOG10(2),0):エクセル計算式
で区分数を求める方法があります。
 また、区間距離は、=ROUND((データの最高値-最低値)/(度数区分数値-1),有効桁数)で求め、区分の左端は、
=ROUNDUP(データの最低値-区間距離/2,有効桁数)
右端は=ROUNDUP(データの最高値+区間距離/2,有効桁数)
とします。
 区間がと度数区分数が出たら、その範囲にあるデータ数を数えて、ヒストグラムができます。
 
>最小側、最大側は 最小値、最大値を含んだ値としなければならないのでしょうか。
 ヒストグラム作成の処理に関しては、上記を参考にしてください。
 その前に、データの最小値と最大値が、正しくとれたデータか検討するため、棄却検定で外れ値が存在するか否かを検定し、外れ値が存在しないと結論づけられたら、正規分布の検定を行ってみてください。もし外れ値が存在する可能性があれば、そもそも、そのデータの信頼性が失われます。サンプリング手法の再検討(データの取り方に偏りがなかったか、無作為に設定してデータを取っていたか等)をして、再度データを得る必要があります。また、そもそも検定する以前に、データ数が少ないと判断が付かなくなってしまいますので、データ数は十分揃える(少なくとも20~30個)必要もあります。

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q統計的推定法と統計的検定法の違いについて

 今大学で交通工学での交通統計の勉強をしているのですが、その中で出てくる「統計的推定法」「統計的検定法」の違いが未だに良く分かりません。

 前者は「既にあるデータを集計して、信頼区間を求める」で、後者は与えられたデータを基に、妥当かどうかを判別するようですが、具体的に答えをどう求めたらよいか分かりません。教科書を見てもよく理解できないので、もしよければ参考になる本やサイトがありましたらお願いします。

Aベストアンサー

もう既に見られたかもしれませんが、、、

http://aoki2.si.gunma-u.ac.jp/lecture/Kentei/kenteitosuitei.html

などを見てもよく理解できませんか?


人気Q&Aランキング