DOEレンズの原理を勉強しています。
まずは↓を見てください。
http://www5f.biglobe.ne.jp/~kztanaka/doe.html

インターネットでDOEレンズの原理について探していた際に見つけたものなのですが・・・
いまいちこれを読んでも腑に落ちない部分がいくつかあるので質問いたします。

(1)回折型格子レンズについて。
 「回折」に対して正しく理解していないのか,溝型(ブレーズ型)回折格子でなぜ回折が起きるのかが分かりません。
 「回折」とは
  1,直進してきた平面波が障害物に遮られる。
  2,スリット幅がある場合,隙間状に狭められる。
  3,そこを点光源とみなしてホイヘンスの原理に従い同心円に広がる。
  という現象だと認識しています。
  要は「障害物」と「通り抜ける幅(スリット)」があるから起きる現象ではないのでしょうか?
 ブレーズ型回折格子ではスリットが無い様に思うのです。

以下は,上記サイトの論理に関しての疑問です。

(2)
「図で分かるように、入射した光は次数に応じて回折する角度が違います。これが迷光になるため、回折レンズを光学系の中に組み込むのが困難だったのです。
これを改善するには、入射した光をある次数に集中させることが必要です。」
とあります。続けて,
「そのためには溝を掘るだけではなく、溝と溝の間を斜めにするとある特定の波長に対し、回折効率を100%近くまで上げることができます。 これをブレーズ化といいます。」
とあります。さて,「ブレーズ化」のリンク先も読むと・・・
 ・通常のスリットではスリット間(つまり障害物)の部分に直進してきた光はどこかへ行く。
 ・これを解消し,画角全面の光を集光させるためにブレーズ化する。
と書いているように思います。
では,
 「入射した光をある次数に集中させること」
 はどのように行われているのでしょうか?

A 回答 (1件)

(1)回折型格子レンズの回折について


回折格子は点光源間の干渉により特定の方向に光が集中する現象だと思いますが、
これは波源からの光路長差が波長の整数倍で強めあうという条件が
特定の方向で成り立つためにおきる現象です。
ですので、「障害物」と「通り抜ける幅(スリット)」が要件ではありません。
※回折というときは障害物に対する周り込みを意味しますが、
回折格子というときは、複数の波源(波源から同心円状に波が広がる様を回折と考えます)
とみなせるものが周期的に並んでいるものを総称して回折格子というように思います。

さて、回折型格子レンズですが、
段々となっているところのひとつひとつを波源と
みなします(遠くからみれば多少大きさのあるものでも点に見えるので、
「遠く」での像を考えます)。
そうして、それらは周期的に並んでいるので上の条件で特定方向に
回折スポットが現れることになります。

(2)グレーティングによる回折には次数により方向がきまっています。
一方、屈折も屈折率と界面の傾斜角により方向がきまっています。
ある次数に屈折の方向も合わせると特定の次数に光が集中して効率がよくなる、
ということではないでしょうか?
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qレーザのスポット径の計算式

自分が使用しているレーザの加工サイズ(スポット)径を計算式から算出したいと考えています.以前同様の質問に対し,mickjey2さんが丁寧に回答してくださったにも関わらず,自分の知識の無さから未だに解決していない次第です.式としては、
(1)スポット径w=4λd/πw0
         λ:波長
          d:対物レンズの焦点距離
         w0:レンズに入射するビーム径
(2)スポット径w=w0*{1+(λd/πw0^2)^2}^1/2
の2つがあることは分かったのですが,どちらを使用して良いのか分からないのです.実際に波長1064nm,焦点距離30.5mm,入射ビーム径1.5mmで計算したのですが,スポット径にかなりの違いが見られました.
それぞれの式はどのような条件の際に用いるものなのかどなたか教えてください.宜しくお願いします.
(どちらかがガウスビームの式なのでしょうか?)
最後にもう一つ,私の使用するレーザユニットはM^2~1.5と表記されています.ガウスビームとみなす事が出来るでしょうか?
         

自分が使用しているレーザの加工サイズ(スポット)径を計算式から算出したいと考えています.以前同様の質問に対し,mickjey2さんが丁寧に回答してくださったにも関わらず,自分の知識の無さから未だに解決していない次第です.式としては、
(1)スポット径w=4λd/πw0
         λ:波長
          d:対物レンズの焦点距離
         w0:レンズに入射するビーム径
(2)スポット径w=w0*{1+(λd/πw0^2)^2}^1/2
の2つがあることは分かったのですが,どちらを使用して良い...続きを読む

Aベストアンサー

ではすぐに計算できる形でご提供しましょう。
使用する式は加工用途のYAGレーザですからガウシャンビームの式の発展版を使います。(詳しくは大御所お二方の書かれた "Output Beam Propagation and Beam Quality from a Multimode Stable-Cavity Laser", Anthony E.Siegman, Fellow IEEE, and Steven W.Townsend, IEEE Jurnal of uantum Electronics, Vol.29, No.4, April 1993 でも参照下さい。)

平行な、半径r、BQFactorがM2、ビームを焦点距離fのレンズに入射したとき、ビームウエスト半径r0は、

r0 ^2 = { r^2 * f^2 / Zr^2 } / { 1 + (f/Zr)^2 }

ここで、 Zr = π * r^2 * n / {M2 * λ}

M2 : M^2 の値
λ : 波長
 n : 屈折率(空気中ならばほとんど1)

全部MKSA単位で計算すればOKです。
M2が1からはずれてくると段々と上式と実際のスポットには食い違いが生じてきますのでご注意下さい。(詳しくは論文を読んで下さい)

ではすぐに計算できる形でご提供しましょう。
使用する式は加工用途のYAGレーザですからガウシャンビームの式の発展版を使います。(詳しくは大御所お二方の書かれた "Output Beam Propagation and Beam Quality from a Multimode Stable-Cavity Laser", Anthony E.Siegman, Fellow IEEE, and Steven W.Townsend, IEEE Jurnal of uantum Electronics, Vol.29, No.4, April 1993 でも参照下さい。)

平行な、半径r、BQFactorがM2、ビームを焦点距離fのレンズに入射したとき、ビームウエスト半径r0は、

r0...続きを読む

Q開口数 NAって どんな数字のことですか??

レンズとかで 開口数 NAっていう数字を聞きますが、
(1)どんな意味なんでしょうか?

(2)その数字が大きいとどうで、小さいとどうなんでしょう?

(3)たとえば、一般的なものでは、どのくらいの数字が常識で
どのくらいの数字だと 限界だとか、すごいレンズだってことになるんでしょうか?

------

光学関係の本をちょっと見れば載っているのかもしれませんが、
不精ですいません。ここで質問させてください。


_

Aベストアンサー

NAの定義は、
NA = n * sinθ
です。(nは光路の屈折率)
いまレンズがあって、その先に焦点があるとします。
レンズを通った光が焦点に結ぶことを考えますと、レンズのどの位置の光も焦点一つに集まります。
ここで、レンズの両端から出た光が焦点に集まるとき、円錐状に光が集まる図を書くことが出来ますよね。
(イメージできます?円錐の頂点が丁度焦点です)
このときの、円錐を横から見た時の頂角が2θになります。
つまり、θは0より大きく、90度よりは小さくないといけません。
従って、NAも普通は0<NA<1の間の数値となります。
簡単には、焦点距離がfで、レンズの半径がrとすると、tanθ=r/fですから、これからθを求めてsinθを求めれば良いわけです。

さて、この数値は色んな目的に使われます。
一つは明るさです。一つの点から出た光は通常四方八方に進みますが、NAが大きいと取り込む角度が大きいので明るくなります。
もう一つは焦点深度です。NAが大きいと焦点から像がずれたときに、大きくぼけます。
最後に、解像度です。これの説明はちょっとやっかいですが、基本的に光は絶えず広がろうとする性質(回折)があると思って下さい。
そのため、もし非常に小さく絞り込もうとすると大きな角度θで絞り込まないと、光の広がろうとする性質がレンズに打ち勝ってしまって、絞り込め無くなります。

これまでの話で大体おわかりと思いますが、NAが小さい方は特別すごいことではありません。NAが大きい方はすごいことです。
用途によってすごさは変わってきますが、顕微鏡だと0.7位は特別ではないでしょう。0.8以上だと高解像度になってきます。
中には1.0とか、1を越える場合もあり、これはすごいことです。
ちなみに、1を越えるためには、光路を屈折率1以上の物質(実際には水溶液)でレンズと被測定対象物を満たしてあげます。

別の用途として、高精度レンズといえば半導体の回路を焼き付けるステッパー用レンズでしょう。これはNA=0.65位が普通、NA=0.7, 0.75だと高解像度、中にはNA=0.8という超高解像度のものもあります。

では。

NAの定義は、
NA = n * sinθ
です。(nは光路の屈折率)
いまレンズがあって、その先に焦点があるとします。
レンズを通った光が焦点に結ぶことを考えますと、レンズのどの位置の光も焦点一つに集まります。
ここで、レンズの両端から出た光が焦点に集まるとき、円錐状に光が集まる図を書くことが出来ますよね。
(イメージできます?円錐の頂点が丁度焦点です)
このときの、円錐を横から見た時の頂角が2θになります。
つまり、θは0より大きく、90度よりは小さくないといけません。
従って、NAも普通...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q樹脂材料の曲げ弾性率について

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとしたのですが、
材料のヤング率(縦弾性係数)を知らないことに
気づきました。
同僚に聞いてみたところ、「曲げ弾性率」というのは
材料の仕様書に載っていると教えてくれました。
職場にある材料便覧を見ても「曲げ弾性率」は
載っていました。
この「曲げ弾性率」はヤング率(縦弾性係数)と
同じなのでしょうか。それとも違うのでしょうか。
もし違う場合、ヤング率(縦弾性係数)は
どのようにして調べるべきなのでしょうか。
似たような経験がある方がいましたら
お手数ですがご教示願います。

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとし...続きを読む

Aベストアンサー

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりますが,曲げのかかる部材には,引張・圧縮応力の他に,せん断応力もかかっています.これらの効果が総合的に寄与してくるため,引張弾性率と曲げ弾性率は,「意味合いとしては」異なる物性値です.

しかし,ごく一般的なプラスチックであれば,引張弾性率と曲げ弾性率はほぼ同じ値になります.
下記などにデータが出ていますが,恐らくほぼ同等か,曲げ弾性率の方が10%程度低い値になっていると思います.
http://www.m-ep.co.jp/mep-j/tech/index.htm
http://www.mrc.co.jp/acrypet/04tech_01.html

カタログデータに曲げ試験が多い理由は,試験が簡単だからです.薄い平板の試験片が使えますからね(チューイングガムのような形状です).それに対し,引張試験では,試験片を「つかむ部分」の加工が難しく,やや複雑な形状になってしまいます.

というわけで,プラスチックの分野では,曲げ弾性率を測定して,これをEとして代用するケースが多いと思います.

ただし,圧縮やせん断弾性率が引張と極端に違う材料・・・たとえば,ガラス繊維で一方向強化したような異方性材料では,曲げ弾性率とヤング率は大きく異なります.

あと,蛇足になりますが・・・
曲げ弾性率=曲げ応力/曲げひずみ
とありますけど,前述の通り,曲げ応力や曲げひずみは一定値ではありませんので注意が必要ですね.材料内部で分布をもっています(ここが引張と違うところ).

通常は,曲げスパンL,破断荷重P,試験片幅b,厚さh,たわみxなどを用いて,
E=(P・L^3)/(4・b・h^3・x)
のような式で求めます.試験方法によっても式が違ってきますので,材料力学の教科書をお読み下さい.

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりま...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q回折格子のブレーズ角

いつもお世話になります。
回折格子のブレーズド ホログラフィック グレーティングですとブレーズ角があると思います。

このブレース角でブレーズ波長(回折効率のピーク波長)が決まるとカタログに書いてありました。
ここで質問なのですが、そうますとブレーズ角は物理的に配置する時に意識する角度でなく
(ブレーズ角が何度だからこの角度は+ブレーズ角度分増すとか・・・・)
あくまでも結果的に選んだ回折格子はこんな角度でしたと把握する程度なのでしょうか?

私は1次光の出射角を知りたい時は、sinα+sinβ=Mmλに代入して求め、ブレーズ角を意識していません。

α:入射角
β:出射角
M:格子周波数[本/mm]
m:何次の回折光
λ:入射波長


ブレーズ角がカタログに記載されている意味を教えて下さい。
よろしくお願いします。

以上

Aベストアンサー

>ちなみにですがnzw様は1次光とか2次光とかの、回折光の広がりを計算等で導けますか?今回使用している光源は830±10nmで1次光を使用しています。おおよその回折光の広がり具合を把握したいです。

 一つ前の質問と同じ方だったのですね。Q&Aを拝見しましたが、おそらく知りたい内容がうまくご回答者に伝わっていない様に見受けられました。(たぶん、真に必要とされる計算は波動光学を使わなくても、幾何光学で見当がつけられる内容ではないかと思います。)

 まずは、光学の教科書を購入され、有る程度勉強された方が良いように感じます。有る程度知識がたまれば、ポイントをしぼった質問ができるようになり、より適切な回答が得られるはずです。例えば、オプトロニクス社は実践的な光学の書を沢山だしていますので、参考に出来る物があると思います。例えば
http://www.amazon.co.jp/gp/product/toc/4900474274/ref=dp_toc?ie=UTF8&n=465392
など。

 あとは、OplusEの光の鉛筆シリーズも、初学者には役立つ情報が含まれています。エッセイ形式なので、必要な回を見つけるのが大変ですが。
 なお、波動光学を勉強するのであれば、ヘクト等の物理系の教科書ということになるかと思いますが、とりあえず幾何光学を理解してからでいいと思います。

http://shop.optronics.co.jp/
http://opluse.shop-pro.jp/?mode=cate&cbid=720322&csid=0&sort=n

>ちなみにですがnzw様は1次光とか2次光とかの、回折光の広がりを計算等で導けますか?今回使用している光源は830±10nmで1次光を使用しています。おおよその回折光の広がり具合を把握したいです。

 一つ前の質問と同じ方だったのですね。Q&Aを拝見しましたが、おそらく知りたい内容がうまくご回答者に伝わっていない様に見受けられました。(たぶん、真に必要とされる計算は波動光学を使わなくても、幾何光学で見当がつけられる内容ではないかと思います。)

 まずは、光学の教科書を購入され、有る程度勉強...続きを読む

Q回折と屈折の違いは何か?

どてらも同じように感じるが、どこが違うのか?教えてください。

Aベストアンサー

質問されているかたは、高校生以上でしょうか?

高校
の物理の教科書には出ていると思いますよ。

回折
港には防波堤がつくられているが、そのかげにも波は入ってくる。
また、音は物のかげでも聞こえる。これらはいずれも波が障害物の
うしろにまわりこむためにおこる現象で、これを波の回折という。

屈折
波がある媒質のなかから異なった波のなかへ進むとき、一般に
波の進行方向が変わる。この現象を、波の屈折という。

どこが違うかといえば、
1.回折は波の媒質が同じときに起るが、屈折は違う媒質間でおこる。
2.回折は障害物があると観測できるが、屈折は障害物は関係ない。
というところが、直接的なことでしょうか。

また、光の場合、回折はどうしても「波」でないと説明できないが、
屈折は「波」でなくても説明がつく気がします。。

Qレンズのフーリエ変換作用

レンズのフーリエ変換作用とは何かわかりやすく教えて下さい。
または、光学的な計算・解析でのフーリエ変換の意味を教えて下さい。
なお、私一応、数学のフーリエ変換をわかっているつもりです。
これをどうレンズに応用するのか、よくわからないのです。

Aベストアンサー

既にある程度の予備知識はお持ちのようなので、簡単に説明しますね。
詳しくは光学の割と基本的な本を参考にして下さい。

出発点はキルヒホッフの回折理論になります。
で、今光源があり、その先に開口がある場合、開口を通った像は上記理論の式で計算できます。
この像は要するに回折像になります。
さて、この像は、開口とスクリーンの距離によって、フレネル回折像(近いとき)、フランフォーファ回折像(遠いとき)と区別して計算します。
というのも、それによって近似の仕方が異なるためです。
さて、ここで、開口の後ろにレンズを入れてその焦点距離にスクリーンを置くと、レンズの働きにより丁度開口とスクリーンの距離を無限遠にしたときに相当します。
さて、こうやって立てたレンズによるこのフランフォーファ回折像の式を眺めると、丁度フーリエ変換式と同じ形になります。
(開口の関数をフーリエ変換した形になる)

これが基本となります。
おもしろいのはこの近似のなれの果てのような形で出てきたフーリエ変換による取り扱いが光学ではかなり本質的な意味をもちフーリエ光学として発展しました。
詳しい計算は省略しますが、開口による「フランフォーファ回折」の計算が載っていればその式を眺めてみることが出来ますよ。

既にある程度の予備知識はお持ちのようなので、簡単に説明しますね。
詳しくは光学の割と基本的な本を参考にして下さい。

出発点はキルヒホッフの回折理論になります。
で、今光源があり、その先に開口がある場合、開口を通った像は上記理論の式で計算できます。
この像は要するに回折像になります。
さて、この像は、開口とスクリーンの距離によって、フレネル回折像(近いとき)、フランフォーファ回折像(遠いとき)と区別して計算します。
というのも、それによって近似の仕方が異なるためです。
さ...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Q【Excel】3軸以上のグラフを作成できますか?

Excelでグラフを作成する場合
Y軸が2本で平面のグラフまでは
標準で用意されていると思うのですが、

例えば下のようなX軸が共通でY軸が3本以上必要となる(吸塵率「%」・粉塵量「個」・騒音レベル「dB」)
表をグラフ化する場合
どのようにすればいいのでしょうか?

銘柄   吸塵率% 排気中粒子 駆動音平均
手軽    16.3%      0個    54dB
排気0   13.4%    4000個    60dB
JET    35.3%    1000個    62dB
かるワザ 67.5%      0個    63dB

(表記中の固有名称その他は現実のそれとは何ら関係なく・またデータも説明用に一時的に作成されたものとする)

Aベストアンサー

 散布図でダミーのY軸を作成作れば、3軸でも4軸でも可能です。ただ、その軸をどのように配置するかという問題があります。
 また、3軸なら「三角グラフ」、4軸なら「Jチャート」というグラフもあります。2つとも散布図を工夫すれば、Excelで作成可能です。

 しかし、今回の表の場合は、作成元のデータを加工して、スネークプロット(縦の折れ線グラフ)またはレーダーチャートを作成したらいかがでしょうか。

 データの加工は、偏差値・達成率・最大値の対する比率などを使って基準を揃え、評価が高いほど値が高くなるように調整します。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報