(※以下PA、PBなどの英語はベクトルを表します
  またy/xはx分のyとします)

Q.
△ABCと点Pに対して、等式2PA+3PB+PC=0
が成り立つ時、点Pはどのような位置にあるか。

A.
点Aに関する位置ベクトルを考えて、等式を変形すると
-2AP+3(AB-AP)+(AP-AC)=0
整理して6AP=3AB+AC

すなわちAP=2/3×3AB+AC/4=2/3×3AB+AC/1+3

よって、辺BCを1:3に内分する点をQとすると
Pは線分AQを2:1に内分する点である。



この問題の意味がさっぱりわかりません;
ちなみに僕は高校二年生です。
どなたか理解できるように解説をつけたしてくれませんか?

このQ&Aに関連する最新のQ&A

A 回答 (1件)

AP=2/3×(3AB+AC)/1+3 ここまでの変形はわかりますよね


ここで直線ABをm:nに内分する点Pの位置ベクトルは
mB+nA/m+nなので、
(3AB+AC)/1+3 はBCを1:3に内分する点(Q)をあらわします。
そしてAP=2/3AQとなるのでPは線分AQを2:1に内分する点になります
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q位置ベクトルについて

今ベクトルを勉強しているのですが、位置ベクトルの考え方がよくわかりません。
位置ベクトルというのは、点Oを基点に考えるので、ベクトルの始点を点Oに持っていって考える、ということと解釈しているのですが、
そうすると、
位置ベクトルで表されたベクトルは、その終点がベクトルを表す事になるので、終点だけを考えればよいから便利、ということでしょうか?

位置ベクトルはけっこう大事だと思うので、位置ベクトルの考え方のポイントを教えていただけたらうれしいです。よろしくお願いしますm(__)m

Aベストアンサー

stripeさん、こんばんは。
今はベクトルについて勉強されているんですね。

>位置ベクトルというのは、点Oを基点に考えるので、ベクトルの始点を点Oに持っていって考える、ということと解釈しているのですが、

そうですね。
位置ベクトルというのは、その名のとおり、位置を表すベクトル、と考えていいでしょう。
たとえば、点A(2,3)という点があったとして、それを表す位置ベクトルは、

OA=(2,3)

ですよね。
また、線分MNの中点Pの位置ベクトルは、
点M、点Nの位置ベクトルを、それぞれ
→   →
OM, ON
とすると、
→   →   →    
OP=(OM+ON)÷2

のようになりますよね。
その点Pの位置を、相対的に、原点を中心として表したときに
どうなるのだろうか?みたいな感じだと思ってください。

>位置ベクトルで表されたベクトルは、その終点がベクトルを表す事になるので、終点だけを考えればよいから便利、ということでしょうか?

その点の位置関係を、相対的に表せる、ということで大変便利なのです。
原点Oを定めておくと、平面上の点Aの位置は、
ベクトルOAによって、定まりますよね。
このとき、→ →
     a=OAを点Aの位置ベクトルといい、
位置ベクトル→        →
      aの点を、たんに、点aと呼ぶこともあります。

>位置ベクトルはけっこう大事だと思うので、位置ベクトルの考え方のポイントを教えていただけたらうれしいです。

位置ベクトルは、ベクトルの中でもかなり重要ポイントです。
考え方のポイントというか、コツは、図形の証明なんかでも
「とにかく位置ベクトルで考えてみよう!」
ということです。

たとえば、今まであたりまえのような定理として使ってきた
「三角形ABCの、底辺をBCとしたときに、
AB,ACの中点M,Nを結ぶ線分MNは、
底辺BCに平行で、長さはBCの半分である」

などという定理も、位置ベクトルを用いれば、分かりやすく証明されます。
上の問題は、平行、かつ半分、を示せばよいので
→     →
MN=(1/2)BC
がいえればよいですね。
三角形の3点A,B,Cの位置ベクトルを、
→ → →    →  →
a, b, cとして、MN、BCを、それぞれで表してみましょう。

頑張ってください。慣れると大変便利でベクトルが得意になりますよ。
ご参考になればうれしいです。

stripeさん、こんばんは。
今はベクトルについて勉強されているんですね。

>位置ベクトルというのは、点Oを基点に考えるので、ベクトルの始点を点Oに持っていって考える、ということと解釈しているのですが、

そうですね。
位置ベクトルというのは、その名のとおり、位置を表すベクトル、と考えていいでしょう。
たとえば、点A(2,3)という点があったとして、それを表す位置ベクトルは、

OA=(2,3)

ですよね。
また、線分MNの中点Pの位置ベクトルは、
点M、点Nの位置ベクトルを...続きを読む

Q定数って?実数・定数の使い分けって?

こちら現在高校生です。
学校で整数、有理数の定義などはやりました。
ですが、定数の定義・意味・特徴がわかりません。
自分の中では定数=定まる数 つまりk:定数ならkは1個に定まるなどと勝手に考えています。このように、定数の性質・特徴たるものもわかりません。

あと、よく例題を見てみると「(k:定数)」や「(k:実数)」などと書いてありますがこの定数、実数の使い分けはどのようにするのでしょうか。

少々わかりづらい質問ですが、ご回答お願いします。

Aベストアンサー

「定数」は「どんな数でも良いがある値を持っていて"変化しない"数」です。
>「(k:定数)」
この場合kはどんな数でも良いが変化しない一定の値。
>「(k:実数)」
この場合、条件にkは実数であって虚数を含まない(複素数でない)数で値は一定。


人気Q&Aランキング

おすすめ情報