落下させた場合
mdv/dt=mg-cv^2
の運動方程式を積分して終端速度がv=√mg/cになるのはわかるのですが、
もし初速度v0を与えてそれが√mg/cより大きい場合を計算すると
終端速度v=(v0+√mg/c)/2でいいのでしょうか?
計算するとこうなるのですが、運動方程式でdv/dt=0として計算すると√mg/cとなり初速度がなくても答えはかわりませんでした。
初速度を与え、それが与えない場合の終端速度より大きい場合の終端速度について教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

左辺の



>mg-cv^2

は力ですから,これが正ならば+方向の力が,負ならば-方向の力が働きます。
この方程式は下向き(重力の向き)に正方向を取り,下向きの速度を持っている場合の式なので,
速度vも正(下向き)です。

終端速度はこの力が0になり等速度運動になったときの速さで,質問文にあるとおり,v=√[mg/c]です。

これよりも速度(下向き)が速かった場合,つまり,v>√[mg/c]の時には,
力はmg-cv^2<0となるのでマイナス方向(上向き)の力が働きます。
今の物体の運動は下向きに落下しているところですから,
上向きの力が働けば速さは減少していき,やがて終端速度v=√[mg/c]になったところで,力が0,つまり加速度0となり,等速運動になります。

逆に速さが遅かった場合には今度は下向きの力が働くので物体は加速され,
同じく,終端速度v=√[mg/c]になったところで,力が0,つまり加速度0となり,等速運動になります。
    • good
    • 0
この回答へのお礼

加速度をプラスのままで考えてしまいました。
迅速な回答ありがとうございます。

お礼日時:2009/05/19 13:28

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q空気抵抗の式について

空気抵抗は次式で求められるそうですが、なぜ2で除すのか理解できません。
      F=P*C*S*V^2/2
F:空気抵抗、P:空気密度、C:空気抵抗係数
S:投影面積、V:速度

私なりに考えますと、投影面積(S)に速度(V)をかけてさらに空気密度をかけることで移動した空気の質量が求られ(S*V*P)、その空気は毎秒静止状態から速度Vまで加速されるので加速度がVとなり、力は質量と加速度の積より空気の密度*加速度となり(P*S*V^2)、結局Fは空気抵抗係数を式に加えることで、
      F=P*C*S*V^2
となり、2で除する必要がない気がするのですが・・・
宜しくお願い致します。

Aベストアンサー

 
 
>> 物体は1秒間にVm進み、気体のほうは1秒間に1/2Vm進む、つまり物体に追い越される。「物体が気体を追い越しながら気体を押す」という点が理解し難い。 <<

 (申し訳ありません!この質問忘れてましたご免なさい。)


 メートルとか秒という巨視的なスケールで考えずに、気流の微小体積部分が微小時間の間に‥とイメージしましょう。物理学全般の定石です。

 「追い越しながら加速」ができるのは、物体の固体摩擦と流体の粘性摩擦があるためです。お互いがこすれ合うだけで相手を加速/減速できますよね。 流体の中では 微細部分どうしもこすれ合ってます。だから物体の表面からもらった速度が 広い範囲に次々と分配されて広がって薄まってゆきます。

 No.4の回答も微小な速度変化のつもりで書きました。(巨視的なスケールで考えてしまうと、V は直線変化と限らないので係数が 1/2 である説明になりません。)
これの元ネタは 力学エネルギの定義 です; 力Fで動いた距離dxの積 Fdx がエネルギの定義、 微小距離 dx の間の速度変化は直線と見なされるので時間積分して距離を求めると係数 1/2 が登場する‥というやつです。 で、ベルヌーイの定理の式は エネルギ保存の法則の式 そのまんまですから 係数 1/2 も素のママで登場してます。それが空気抵抗の式にも引き継がれてる、、、という系図です。



 余談;
 空気抵抗は、速度の1乗で効く「粘性抵抗」と、速度の2乗で効く「慣性抵抗」があります。 どちらも運動量保存の法則によるものです。 前者は 流体が物体表面をなでて通る際に物体の運動量を分与され、それが流体分子同士のランダム衝突でバトンタッチされて物体表面からどんどんバケツリレー式に汲み出されてしまう現象です。 後者は 流体分子が物体と正面衝突して速度V に加速される際に物体側の運動量がモロに減る現象です。
 大胆(かつ不正確)に例えれば、槍のような棒が飛んでる場合、前者は棒の側面を空気がなでる抵抗、後者は棒の正面の面積が空気と正面衝突する抵抗です。
 後者の場合、あまりに急な衝突で 周辺とのやり取りが間に合わないと いわゆる「断熱圧縮」になって空気が高温になります。スペースシャトルで、その高温空気が機体の内部に侵入し、金属が熔けて空中分解に至って乗員が死亡した事故が有名です。(事故当時 「 超音速で空気とこすれたための摩擦による熱が原因 」 という報道説明がよくありました。クルマのブレーキ過熱などの日常経験からの演繹でしょうが、流体力学的に正しいのは粘性抵抗の方ではなく慣性抵抗。後者が圧倒的に大きいです。超音速ゆえ断熱圧縮になり物体先端に集中しました。)

http://oshiete1.goo.ne.jp/kotaeru.php3?q=908588
http://oshiete1.goo.ne.jp/kotaeru.php3?q=901153

 もし流体に摩擦が無かったら; 上記の「粘性抵抗」も「慣性抵抗」も「揚力」も起きません。
 
 

 
 
>> 物体は1秒間にVm進み、気体のほうは1秒間に1/2Vm進む、つまり物体に追い越される。「物体が気体を追い越しながら気体を押す」という点が理解し難い。 <<

 (申し訳ありません!この質問忘れてましたご免なさい。)


 メートルとか秒という巨視的なスケールで考えずに、気流の微小体積部分が微小時間の間に‥とイメージしましょう。物理学全般の定石です。

 「追い越しながら加速」ができるのは、物体の固体摩擦と流体の粘性摩擦があるためです。お互いがこすれ合うだけで相手を...続きを読む

Q速度の二乗に比例する抵抗をうける運動について

初速度v0を与え、抵抗しか受けない場合
mdv/dt=-cv^2
の運動方程式が出てくると思います。
これを解くと
v=mv0/(cv0t+m)
これを積分して、t=0のときx=0とすると
x=m/c{ln(cv0t+m)/m}
と出てきました。
t→∞としたときv→0まではいいのですが、x→∞になります。
vが0になるので、xはある値に収束すると思ったのですが、どこで間違ってるでしょうか?
よろしくお願いします。

Aベストアンサー

>つまり計算結果は間違っておらずv=0になるとき、xは∞という結果でよろしいということでしょうか

ん~、有限の時間でv=0にはならないので「v=0になるとき」なんてないのですが、気持ちとしてはそういうことですね。
もちろん、現実には慣性抵抗以外の抵抗も働くので、x→∞となる事はないでしょうが。

Q空気抵抗がかかるときの落下運動

空気抵抗がかかるときの落下運動、もしくは放物運動に
関しての質問です。

抵抗力が速度に比例する場合は、変数分離法を用いて微分
方程式を解くことができるのですが、
抵抗力が速度の2乗に比例する場合の微分方程式が解けませ
ん。具体的には次の式です。

ma = -kv^2 + mg
a:加速度 v:速度

この式の解法をよろしくお願いします。

Aベストアンサー

変形分離法でも出来ると思います。

mv' = mg - kv^2
m(dv/dt) = mg - kv^2
{1/(mg - kv^2)}dv = (1/m)dt
∫{1/(mg - kv^2)}dv = ∫(1/m)dt

左辺は部分分数分解を使って、積分すると、

log[{(√mg) + v(√k)} / {(√mg) - v(√k)}] = t/m + C (Cは積分定数)

これをvについて解くと、

v = (√mg/k)[(-1 + Aexp{2(√kg/m)t) / (1 + Aexp{2(√kg/m)t})] (A = exp(C))

となります。あとは初速度などの条件を入れて、Aを求めればvが求まります。
ちょっと積分の計算は自信がありませんので、答えは自分で求めてみてください。
こんなんでよろしいでしょうか?あまり得意な方でないので自信がありませんが…。

Q空気抵抗は落下する物体の速さに比例

高1です。
空気中を落下する物体は、速さvまたはvの2乗に比例する抵抗力を受ける、と参考書に書いてあったのですが、
どんなときに1乗で、どんなときに2乗になるのかが書かれていません。
なので、それを教えてください。
お願いします。

Aベストアンサー

速度が小さい場合は、空気抵抗は速度の1乗に比例します。
ある以上の速度(空気などの周囲の物質の粘性で変化します)を越えると、2乗比例の式に近づきます。
よほどゆっくり出ないと、1乗比例とはなりませんが。このへんの一乗2乗はあくまで近似的な物で。流体力学的な式は、もっと複雑になります。

この辺をどうぞ。
http://www.higashi-h.tym.ed.jp/course/kadai15/matome/kuuki.htm

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む


人気Q&Aランキング

おすすめ情報