つぎの問題についてです

I=∫dx[0,1]∫ycos(xy)dy[0,π/2]
で、xから先に積分する方法とyから先に積分する方法の2通りで計算して、答えが一致することを確認せよ

という問題なのですが、yから先に積分すると途中で詰まってしまいます。
どうすればよいかご教示ください。
よろしくお願いします。

A 回答 (2件)

#1です。


A#1の補足質問の回答

>=∫[0,1]{(π/(2x)) sin(πx/2)+(1/x^2)(cos(πx/2)-1)}dx
ここまでは合っています。

=(π/2)}∫[0,1](1/x)sin(πx/2)dx
+∫[0,1](1/x^2){cos(πx/2)-1}dx
=(π/2)}∫[0,1](1/x)sin(πx/2)dx
-[(1/x){cos(πx/2)-1}][0,1]+∫[0,1](1/x){-(π/2)sin(πx/2)}dx
=-[(1/x){cos(πx/2)-1}][0,1]
=1+lim[x→0]{cos(πx/2)-1}/x
=1+lim[x→0](π/2)sin(πx/2)/1 (ロピタルの定理適用)
=1
    • good
    • 0
この回答へのお礼

ありがとうございます!!
最後まで丁寧に教えて下さり、大変助かりました。

お礼日時:2009/05/20 16:50

>yから先に積分すると途中で詰まってしまいます。


あなたがやった計算を補足に詳しく書いて下さい。
質問を投稿する場合は、質問者のやった計算を詳しく書かないと、どこが間違いなのか、どこまでが正しく理解できていて、どこからおかしくなったかが分かりますので、回答者もアドバイスしやすいですね。

このサイトのマナーにも
「基本的なマナーとして、ご自身である程度問題解決に取り組まれた上での疑問点や問題点、お困りの点を明確にしてご投稿いただきたい」
と書かれています。

>どうすればよいかご教示ください。
とにかくまず、あなたのやった計算過程を詳しく補足に書いてください。

ヒント)
どちらの積分の仕方でも積分値は1になります。

先にxで積分する方が簡単です。こちらから先にやった方がいいかも知れないね。

先にyで積分する方はうまく処理をして難しい積分(初等関数では積分できない正弦積分関数)が現れますが、うまく積分を分割処理すれば打ち消しあって積分ができて1に辿り着けますね。

この回答への補足

大変失礼いたしました
ご指摘ありがとうございます

xからの積分は確かに1になりました
yからの積分の計算方法を補足しておきます

まずycos(xy)を部分積分しました

∫dx[0,1]∫ycos(xy)dy[0,π/2]
=∫dx[0,1]{[y/x sin(xy)][0,π/2]-∫1/x sin(xy)dy[0,π/2]}
=∫dx[0,1]{π/(2x) sin(πx/2)+1/x^2[cos(xy)][o,π/2]
=∫dx[0,1]{π/(2x) sin(πx/2)+1/x^2(cos(πx/2)-1)

しかし、ここで詰まってしまいました
ここまでは合ってますでしょうか?
もしよければここからどのように分割していくのかなど、教えていただければ大変うれしいです。

補足日時:2009/05/20 00:09
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題と

数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題とくかわかりません。問題のどの部分を見てどちらの公式を使うか教えて下さい。

Aベストアンサー

まず置換積分できるか調べましょう.このためには被積分関数を二つの関数の積と考え,一方の関数が他方の関数の原始関数の関数になっていれば置換積分が使えます.すなわち,被積分関数を f(x)g(x) と表したとき,G'(x)=g(x) である G(x) を用いて f(x)=h(G(x)) となる関数 h(u) が見つかれば
∫f(x)g(x)dx = ∫h(G(x))G'(x)dx = ∫h(u)du
です.例えば
(log 2x)/(x log x^2) = h(log x){log x}'
h(u) = (u + log 2) / 2 u = 1/2 + (log 2)/2u
だから
∫(log 2x)/(x log x^2)dx = (1/2){log x + (log 2)log(log x)} + C
となります.
置換積分がダメそうなら部分積分できるか調べましょう.概してこちらの方が調べるのが面倒です(とくに漸化式を使う場合).

Q∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dx の証明

ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。

有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。

定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。

#以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。

ヒント
fに対する不足和、過剰和を、それぞれ、 s(f,Δ)、S(f,Δ)というふうに書けば、s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ) に注意せよ。

同書の略解
分割Δの小区間[a(i-1),a(i)]における f+g,f,g の下限をm(i),n(i),p(i)とすれば m(i)≧n(i)+p(i)、ゆえにs(f,Δ)+ s(g,Δ)=Σn(i)(a(i)-a(i-1)) + Σp(i)(a(i)-a(i-1))≦Σm(i)(a(i)-a(i-1))=s(f+g,Δ)同様にS(f+g,Δ)≦S(f,Δ)+ S(g,Δ) だから、inf(S(f,Δ))=sup(s(f,Δ))、inf(S(g,Δ))=sup(s(g,Δ))なら、inf(S(f+g,Δ))=sup(s(f+g,Δ))=、sup(s(f,Δ))+sup(s(g,Δ))

となっていますが、最後の等式がどうしても出てきません(その前までは理解できました)。行間を埋めていただけるとありがたいです。

s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)

からそれぞれの辺のsup、infを考えるとできるのではないかとも思われるのですが、どうしてもわかりませんでした。

よろしくお願いいたします。

ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。

有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。

定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。

#以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。

...続きを読む

Aベストアンサー

おそらく、同じ分割Δに対して、不等式、
s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)
を考えているからわかりにくいのだと思います。

分割Δ1と分割Δ2を合体させた分割をΔ3とします。
Δ1の分割点x1,…,xmと、Δ2の分割点y1,…,ynを合わせた分割点
x1,…,xm,y1,…,ynによって[a,b]を分割するのがΔ3という意味。

小区間[x(i-1),xi]が2つの小区間[x(i-1),yj]と[yj,xi]に分割された
とすると、小区間[x(i-1),xi]でのinf(f)(xi-x(i-1))よりも、
2つの小区間[x(i-1),yj]と[yj,xi]での
inf(f)(yj-x(i-1))+inf(f)(xi-yj)の方が大きくなる。
sup(f)では逆に小さくなる。
(グラフを描いてみればわかると思います)

すなわち、分割を細かくすると、不足和は大きく、過剰和は小さくな
る。

なので、s(f,Δ1)≦s(f,Δ3)、s(g,Δ2)≦s(g,Δ3)
辺々足して、
s(f,Δ1)+s(g,Δ2)≦s(f,Δ3)+s(g,Δ3)
≦s(f+g,Δ3)≦sup(s(f+g,Δ))←これは、あらゆる分割Δに対するsup
という意味で使っているので、Δは分割の変数のような記号と思って
ください。

このように、別個の分割に対する不等式が示せたので、
s(f,Δ1)、s(g,Δ2)それぞれであらゆる分割を考えて、
sup(s(f,Δ))+sup(s(g,Δ))≦sup(s(f+g,Δ))

infのほうも同様です。

本の記述はわかりませんが、同じ分割に対してのみsup,infを考えてい
たのでは、やや曖昧な気がします。

しかし、私の大学時代の関数論が専門の教授は、一松信先生は大先生
だと絶賛していましたが・・・
おそらく、本の中で論理は通っているものと思われますが・・・

おそらく、同じ分割Δに対して、不等式、
s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)
を考えているからわかりにくいのだと思います。

分割Δ1と分割Δ2を合体させた分割をΔ3とします。
Δ1の分割点x1,…,xmと、Δ2の分割点y1,…,ynを合わせた分割点
x1,…,xm,y1,…,ynによって[a,b]を分割するのがΔ3という意味。

小区間[x(i-1),xi]が2つの小区間[x(i-1),yj]と[yj,xi]に分割された
とすると、小区間[x(i-1),xi]でのinf(f)(xi-x(i-1))よりも、
2つの小区間[x(i-1),yj]と[yj,xi]での
inf(f)(yj-x(i...続きを読む

Q積分公式の記述での使い方

記述式の問題で積分公式(インテグラル無しで面積を求められるやつです)を使っても減点はないでしょうか。


例えば、こんな感じで

積分公式よりS=~



積分公式は教科書に載っていないので、こういう使い方が受験に通じるのか不安です。回答お願いします。

Aベストアンサー

こんばんわ。

確かに「積分公式」ってなんのことでしょうか?
それも「インテグラル無しで面積を求められるやつ」とは・・・?

もしかして、次のような式のことですか?
∫[α→β] (x-α)(x-β) dx= -1/6* (β-α)^3

いずれにしても、
>積分公式よりS=~
といった表現では通用しません。
すでに、ここの質問でも通用していないくらいですから。

単に積分の計算であれば、とくに明記せずに用いてもいいと思います。
この式自体を示せと言われれば、きちんと計算しないといけません。

QRe: f:[0,1]で連続関数,lim[n→∞]∫[0 to 1]f(x^n)dx=f(0)の証明での疑問

[問]fを[0,1]で連続な関数とする時,lim[n→∞]∫[0 to 1]f(x^n)dx=f(0)となる事を示せ。

という問題に取り組んでいます。

積分の平均値の定理「fが[a,b]で連続ならば∃c∈(a,b);∫[a~
b]f(x)dx=f(c)(b-a)」を使って下記のように解きました。

十分小さな正の数εでもって,[0,1-ε],[1-ε,1]に積分区間を分けると,
f(x^n)は連続なので,積分の平均値の定理から,
∫[0 to 1]f(x^n)dx
=∫[0 to 1-ε]f(x^n)dx+∫[1-εto 1]f(x^n)dx
=(1-ε)f(α^n)+εf(β^n) (0<α<1-ε<β<1)
→(1-ε)f(0)+εf(0)=f(0)

然し,βはεに依存するので1未満だからといってβ^n→0とはそう簡単には言えないみたいなのです。
私としましてはεに依存してようが1未満なので必ずβ^n→0と思うのですが、、、
どのように解釈したらいいでしょうか?

Aベストアンサー

お二人が問題点を指摘されていますので、証明だけです。

0<c<1を任意に与える。

|∫[x=0,1]{f(x^n)-f(0)}dx|
≦∫[x=0,1-c]|f(x^n)-f(0)|dx+∫[x=1-c,1]|f(x^n)-f(0)|dx

∀ε>0;∃N:自然数
|f(x^n)-f(0)|<ε[n>N]から
∫[x=0,1-c]|f(x^n)-f(0)|dx<(1-c)ε<ε

max[1-c≦x≦1]|f(x^n)-f(0)|]
≦max[0≦x≦1]|f(x^n)-f(0)|]
≦2max[0≦x≦1]|f(x)|=M

とおいて、

|∫[x=1-c,1]{f(x^n)-f(0)}dx|
≦∫[x=1-c,1]|f(x^n)-f(0)|dx
=Mc

即ち
|∫[x=0,1]{f(x^n)-f(0)}dx|<ε+Mc[n>N]
から
lim[n→∞]|∫[x=0,1]{f(x^n)-f(0)}dx|≦Mc

左辺は、0<c<1の選び方に依存しないので、
lim[n→∞]|∫[x=0,1]{f(x^n)-f(0)}dx|≦0

lim[n→∞]∫[x=0,1]f(x^n)=f(0)

お二人が問題点を指摘されていますので、証明だけです。

0<c<1を任意に与える。

|∫[x=0,1]{f(x^n)-f(0)}dx|
≦∫[x=0,1-c]|f(x^n)-f(0)|dx+∫[x=1-c,1]|f(x^n)-f(0)|dx

∀ε>0;∃N:自然数
|f(x^n)-f(0)|<ε[n>N]から
∫[x=0,1-c]|f(x^n)-f(0)|dx<(1-c)ε<ε

max[1-c≦x≦1]|f(x^n)-f(0)|]
≦max[0≦x≦1]|f(x^n)-f(0)|]
≦2max[0≦x≦1]|f(x)|=M

とおいて、

|∫[x=1-c,1]{f(x^n)-f(0)}dx|
≦∫[x=1-c,1]|f(x^n)-f(0)|dx
=Mc

即ち
|∫[x=0,1]{f(x^n)-f(0)}dx|<ε+Mc[n>N]
から
lim[n→∞]|∫[x=0,1...続きを読む

Q分点座標が±0.5のGauss-Legendre積分公式を知りませんか。

高精度化が必要な数値計算をやっています。
特に、数値積分の高精度化が必要なため、Gauss-Legendre積分公式の使用を考えています。
ただし、解く方程式が積分方程式であるなどの理由からそのままでは使用できません。
使用するためには、Gauss-Legendre積分公式の分点座標が区間の中心である必要があります。
例えば、分点数が2の場合、通常は座標x=±0.57735...重みw=1ですが、これを座標x=±0.5とできるような積分公式はないでしょうか?

Aベストアンサー

ううむ。これだけじゃ回答しようがないと思うなあ。

 ガウス・ルジャンドルの数値積分というのは、f(x)を-1~1の区間で積分するときに、n次ルジャンドル関数の零点にあたるxでf(x)をサンプリングして重み付きの和を取るんでした。無論、積分区間内に特異点があったりしたら使えません。一般に積分範囲が x=a~b である場合には
x=((b-a)t+a+b)/2
と変数変換すれば、t=-1~1のtに関する積分になる。そしてdx/dt = (b-a)/2という因子を掛け算しておけば良いですね。n次のガウス・ルジャンドル法は、高々n次の多項式で近似できるf(x)を扱う場合に旨く行きます。

 さて、ご質問は、おそらく積分範囲 x=-1~1に対してガウス・ルジャンドルの数値積分を使いたいけれど、次数を2にして、分点、すなわちサンプリングする点を±0.5だけにしたい、という注文です。たぶん、±0.5における被積分関数f(x)の値なら簡単に求められる、というのでしょう。
 もちろん、適当な一次式ではない関数g(たとえば3次関数)を用いて
x=g(t)
という変数変換でx=±0.5をt=±0.57.... に移し同時にx=±1をt=±1に移す、ということ自体は簡単です。するとf(g(t))と
dx/dt = g'(t)
の積を被積分関数としてt=-1~1について積分することになります。この場合、被積分関数 f(g(t)) g'(t) がtの2次多項式で近似できるんでないと、2次のガウス・ルジャンドル法を使って精度が出るという保証はありません。
 高精度の数値積分をやりたいと仰っている割に、f(x)が高々低次の多項式で近似してしまえるんだったら、何もガウス・ルジャンドル法に拘る必要はないんで、例えばニュートン・コーツ型の数値積分、すなわち分点を等間隔に取る方法でも十分じゃないの?と思うんですが、どうなんでしょうね。

 或いは分点の数をもっと増やして良い、というのだったら、代わりに例えば-1~-0.5, -0.5~0.5, 0.5~1の3つの区間に分けてそれぞれ積分するのでも良い。被積分関数の傾きが急な部分でサンプリングを細かくしてやるというのも精度が出ますし、その代わりに適当な変数変換をして等間隔サンプリングしたり、ガウス・ルジャンドル法を使ったり…いろんな処方が考えられます。

 ですから、「±0.5」と限定なさる理由をもう少し明確に補足して戴くか、具体的に被積分関数をupして戴かないと、ろくな回答にならないと思います。

ううむ。これだけじゃ回答しようがないと思うなあ。

 ガウス・ルジャンドルの数値積分というのは、f(x)を-1~1の区間で積分するときに、n次ルジャンドル関数の零点にあたるxでf(x)をサンプリングして重み付きの和を取るんでした。無論、積分区間内に特異点があったりしたら使えません。一般に積分範囲が x=a~b である場合には
x=((b-a)t+a+b)/2
と変数変換すれば、t=-1~1のtに関する積分になる。そしてdx/dt = (b-a)/2という因子を掛け算しておけば良いですね。n次のガウス・ルジャンドル法は、高々n次の...続きを読む

Q∫[a,2a]y√4a^2-y^2]dy

∫[a,2a]y√4a^2-y^2]dy

の導出過程が分からないです。

どのように計算したら良いか教えてくれるとありがたいです。

Aベストアンサー

x = 4a^2 - y^2 と置こうよ。
dx/dy = -2 y になる。

∫{y = a … 2a} y √(4a^2 - y^2) dy
= ∫{y = a … 2a} (-1/2)(dx/dy) √x dy
= ∫{x = 3a^2 … 0} (-1/2) √x dx
= [ (-1/3) x^(3/2) ]{x = 3a^2 … 0}
= (1/3) (3a^2)^(3/2)
= (√3) a^3

Q数学II「微分・積分」で面積を求める公式

6分の1の公式や3分の1の公式みたいに、積分を利用せずに面積を求められる公式って他にありませんか?

Aベストアンサー

(1)や(2)は高校数学のレベルで十分理解できると思います。
これらは,数値積分と呼ばれるもので,近似的に積分(求積)を実現しています。
参考になれば良いのですが。

(1)台形法
(2)シンプソン法
(3)ルンゲ・クッタ法

Qy,z∈V'(Vの線形写像全体の集合)[x,y]=0→[x,z]=0は∃α∋z=αyを意味する事を示せ。

おはようございます。

[Q] Prove the following statement:
Let y,z∈V'(set of all linear functionals on V) [x,y]=0→[x,z]=0 implies that ∃α∋z=αy.

という問題に悪戦苦闘しています。
linear functionalは線形汎写像(終集合がRやCの線形写像)の意味。

この問題はつまり、
"y(x)=0⇒z(x)=0"が成立するならば
線形写像z:V→R(or C) はαyという写像(zはyのスカラー倍になっているような線形写像)。
つまり、
V∋∀x→z(x):=α(y(x))という写像
である事を示せ。
という意味だと解釈しています(勘違いしておりましたらご指摘ください)。
その場合,どのように証明すればよいのでしょうか?

Aベストアンサー

#1です。
>>V≠Ker(y)の時はα:=z(x_0)/y(x_0)と採れば
∀x∈Vに対し、
x∈Ker(y)ならz(x)=0且つy(x)=αz(x)=α・0 (∵仮定) =0となるのでy=zでOK。
x∈V\Ker(y)ならz(x)=(z(x_0)/y(x_0))y(x)=???=y(x)
何故か
z(x)=y(x)が言えません。

z=yではなくz=αyとしてるので問題は無いように思いますが。

Q積分の公式の導出について

積分の公式の導出について

∫{(ax+b)^n}dxの積分公式は、(((ax+b)^n+1)/a(n+1))
なのですが、どのようにすれば導出できるのでしょうか?

ご回答よろしくお願い致します。

Aベストアンサー

ax+b=s とおくと ds/dx=a つまり dx=ds/a
従って 与式=∫s^n/a ds
あとは積分してsを元に戻すだけです。

Aベストアンサー

>所で、今回の問題は
「また、この線形方程式についての結果は何を物語っているか?」
とも問われているのですが
その答えは「∩[i=1,..,m]Ker(yi)の補集合の直交補空間の元を表している」と答えれば正解でしょうか?

●「この線型方程式」とあるが、どこに線型方程式があるのか僕には分かりません。

●意味・意義の解釈は種々にできます。これこそ自分の頭で考えるべきことでしょう。

●あなた自身が指摘してくれた通り、Vはもともと内積は定義されてないのですから、直交補空間をもちだすのは不適切です。内積を用いない解釈を、まずは求められていると思います。
もしも「直交補空間」という概念を用いるなら、どういう内積を入れるのか、書かねばなりません。(僕が「修正」でそうしたように)

●しかしどんな内積を入れたとしても、「「∩[i=1,..,m]Ker(yi)の補集合の直交補空間」は、yiがすべてゼロ写像ならば、V。そうでなければ、{0}になります。(よく考えて見ましょう)

●僕ならば、「この結果は、残念ながら言葉を話せないので、何も物語ることができない」と答えます。
ほとんど自明な結果であり、大した意味があるとは思えませんので、皮肉として。

以上。あまり人にばかり聞かず、自分でよく勉強することを勧めます。
おそらく同じ学校のメンバーがよく問題を丸投げしているので、しばらく答えるのは控えようと思います。

>所で、今回の問題は
「また、この線形方程式についての結果は何を物語っているか?」
とも問われているのですが
その答えは「∩[i=1,..,m]Ker(yi)の補集合の直交補空間の元を表している」と答えれば正解でしょうか?

●「この線型方程式」とあるが、どこに線型方程式があるのか僕には分かりません。

●意味・意義の解釈は種々にできます。これこそ自分の頭で考えるべきことでしょう。

●あなた自身が指摘してくれた通り、Vはもともと内積は定義されてないのですから、直交補空間をもちだすのは不適切です...
続きを読む


人気Q&Aランキング