漸近展開とテイラー展開の違いを教えてください。

A 回答 (1件)

直感的でよければ、参考URLのグラフを見るとわかります。



参考URL:http://homepage1.nifty.com/gfk/Zenkin_Tenkai.htm
    • good
    • 0
この回答へのお礼

参考になりました。ありがとうございました。

お礼日時:2009/05/31 21:26

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q√1+√2+√3+…+√nの漸近展開

http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
によると
1+1/2+1/3+…+1/n
=γ+log(n)+(1/2n)-Σ[k=2,∞](k-1)!C(k)/n(n+1)…(n+k-1)
という漸近展開があるそうです。漸近展開とは、簡単に言うと、nが十分に大きい場合の近似式です。

http://en.wikipedia.org/wiki/Stirling%27s_approximation
によると
n!
=√(2πn)*(n/e)^n*e^λ(n)
という漸近展開があるそうです。

ところで、
√1+√2+√3+…+√n
などの漸近展開をご存知の方がいらっしゃれば教えてください。

y=√xのグラフとy=√(x+1)のグラフではさまれた面積と考えることで、
√1+√2+√3+…+√n
=(2/3)n√n+…
となることはわかるのですが、
√1+√2+√3+…+√n
=(2/3)n√n+α√n+…
とさらに精密にしたいとき、αがどういった定数になるのかわかりません。

http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
によると
1+1/2+1/3+…+1/n
=γ+log(n)+(1/2n)-Σ[k=2,∞](k-1)!C(k)/n(n+1)…(n+k-1)
という漸近展開があるそうです。漸近展開とは、簡単に言うと、nが十分に大きい場合の近似式です。

http://en.wikipedia.org/wiki/Stirling%27s_approximation
によると
n!
=√(2πn)*(n/e)^n*e^λ(n)
という漸近展開があるそうです。

ところで、
√1+√2+√3+…+√n
などの漸近展開をご存知の方がいらっしゃれば教えてください。

y=√xのグラフとy=√(x+1)のグラ...続きを読む

Aベストアンサー

ちなみに今の場合は定積分からも「α=1/2」が想像できます.
まず
∫[0→1] √x dx = 2/3
の左辺を矩形公式で和に変換すると
(1/n)Σ(k=1→n) √(k/n) = 2/3
となり, 両辺に n^(3/2) を掛けると
√1+√2+√3+…+√n = (2/3)n^(3/2)
になります. ただし矩形公式では区間の幅に比例する誤差があるので, 実際には
(1/n)Σ(k=1→n) √(k/n) = 2/3 + O(1/n)
です (O(1/n) は「1/n に比例する項」というくらいの意味).
ここで, 左辺の積分を今度は台形公式で和に変換すると精度が上がって
(1/n)Σ(k=1→n) (1/2)(√[(k-1)/n]+√(k/n)) = (2/3) + O(1/n^2)
になります. ここで同じように両辺に n^(3/2) を掛けて左辺を整理すると
√1 + √2 + … + √(n-1) + (1/2)√n = (2/3)n^(3/2) + O(n^(-1/2))
となり, 両辺に (1/2)√n を加えることで
√1+√2+√3+…+√n = (2/3)n^(3/2) + (1/2)n^(1/2)
まで持っていけます.
ああ, たぶん a が正なら自然数かどうかに関係なく
Σk^a = [1/(a+1)]n^(a+1) + (1/2)n^a + …
となると思いますよ.

ちなみに今の場合は定積分からも「α=1/2」が想像できます.
まず
∫[0→1] √x dx = 2/3
の左辺を矩形公式で和に変換すると
(1/n)Σ(k=1→n) √(k/n) = 2/3
となり, 両辺に n^(3/2) を掛けると
√1+√2+√3+…+√n = (2/3)n^(3/2)
になります. ただし矩形公式では区間の幅に比例する誤差があるので, 実際には
(1/n)Σ(k=1→n) √(k/n) = 2/3 + O(1/n)
です (O(1/n) は「1/n に比例する項」というくらいの意味).
ここで, 左辺の積分を今度は台形公式で和に変換すると精度が上がって
(1/n)Σ(k=1→n) (1/2)(√[(k-1)/n]+√(k...続きを読む

Qテイラー展開とべき級数展開の違いは何ですか?

http://ja.wikipedia.org/wiki/%E3%83%99%E3%83%83%E3%82%BB%E3%83%AB%E9%96%A2%E6%95%B0

ずっとテイラー展開とべき級数展開は同じものであると思っていたのですが、
上記のページをみると
「第1種ベッセル関数はまた、X=0のまわりでのテイラー展開(非整数の に対しては、より一般にべき級数展開)によって定義することもできる。」
と書かれているのですが、
テイラー展開とべき級数展開ってどう違うのでしょうか?

Aベストアンサー

結論から言うと,その記事の言葉の用法がマイナーで,
通常は(原点中心の)テイラー展開とべき級数展開は同じ意味で使われます.

その記事のその部分では,ベッセル関数の級数展開がαが非整数だと
テイラー展開になっていない,ということを注意したかったのだと思います.
しかし,現状では不正確な書き方になっていて,
 (1) 負の整数に対してもテイラー展開にならない.
 (2) 非整数べきの現れる級数を単にべき級数と呼ぶことは少ない.
という2点を考慮して,適当に直すべきです.

ちなみにその記事は,英語版の記事を和訳したものですが,英語版では
 (a) 該当部は単に Taylor series expansion となっている.
 (b) integer or non-integer のコメントは,この文でないところに入っている.
という状況になっています.
きっと和訳した人が (a) はマズイと思って補足したのでしょうが,
そのときに (b) を誤って取り入れてしまい,こんなことになったのだと思います.

Q漸近展開とテイラー展開

漸近展開とテイラー展開の違いを教えてください。

Aベストアンサー

直感的でよければ、参考URLのグラフを見るとわかります。

参考URL:http://homepage1.nifty.com/gfk/Zenkin_Tenkai.htm

Qテイラー展開とローラン展開

テイラー展開とローラン展開の問題の解き方がよく分かりません。どちらにもマクローリン展開を用いるようなのですが・・・。例えば、z=-iを中心に関数f(z)=1/zをテイラー展開及びローラン展開するにはどうすれば良いのでしょうか?式をできるだけ詳しく説明して頂けると助かります。

Aベストアンサー

遅くなったかもしれませんが、補足の説明です。

>z=aにおいて正則な関数f(z)についてはテイラー展開という考え方でいいのでしょうか?

先に点z=aを考えるのではなく、領域から考えたほうがよいのでは?
関数f(z)がどの領域(z平面や与えらている領域D)で正則なのかという風に・・・。

>関数f(x)がz=aで極もしくは真性特異点をもつ場合にはローラン展開、という考え方でいいのでしょうか?

除去可能な孤立特異点、(p位の)極、孤立真性特異点はローラン展開した後で判別するものですから、ローラン展開も領域を意識したほうがいいと思います。
例えば、環状領域は0<|z|<+∞、0<|z-1|<1などと表されます。

>また、ローラン展開をする際は必ずマクローリン展開(u=z-aとおく等してz=0でテイラー展開)を用いるのでしょうか?

必ずしもそうとは言えません。与えられた関数によるでしょう。
例として

f(z)={(z^2)-1}/{(z+1)(2z-1)}の0<|z-(1/2)|<(1/2)
でのローラン展開を求めると、
f(z)=(z-1)/(2z-1)=(1/2)*{1-1/(2z-1)}=(1/2)-(1/4)*{1/(z-1/2)}
従って、f(z)=(1/2)-(1/4)*(z-(1/2))^(-1)

というように、テイラー展開を用いなくてもローラン展開が出来るものもあります。
(途中の計算は確認してください。)

また、領域を意識する必要性は#1のローラン展開の例で領域を0<|z-1|<1
に変えると当然一意性があるので違ったローラン展開になります。(g(z)=-1/zとおいて計算する。)

自分の授業の話ですが複素解析学ではマクローリン展開と言わなかったような気がします。(教授の好みかもしれません。)

それでは頑張って下さい。

遅くなったかもしれませんが、補足の説明です。

>z=aにおいて正則な関数f(z)についてはテイラー展開という考え方でいいのでしょうか?

先に点z=aを考えるのではなく、領域から考えたほうがよいのでは?
関数f(z)がどの領域(z平面や与えらている領域D)で正則なのかという風に・・・。

>関数f(x)がz=aで極もしくは真性特異点をもつ場合にはローラン展開、という考え方でいいのでしょうか?

除去可能な孤立特異点、(p位の)極、孤立真性特異点はローラン展開した後で判別するものですから、ロ...続きを読む

Qe^(1/z)の漸近展開の求め方

独学中のものです。
f(z)~(a_0)+(a_1)/z+(a_2)/z^2+…+(a_n)/z^n …(1)
関数f(z)の漸近展開が(1)のとき、係数(a_0),(a_1),(a_2),…は次のようにして求められる。
『lim[|z|→∞]f(z)=a_0
lim[|z|→∞]z{f(z)-a_0}=a_1
lim[|z|→∞]z^2{f(z)-(a_0)-(a_1)/z}=a_2
 ………………………………………………
          (ただし z∈D )    』…(2)
このようにf(z)が漸近展開を持てば、それは一意的に定められるが、逆は成り立たない。すなわち相異なる二つの関数が同一の漸近展開を持つことがある。
たとえば|argz|<Π/2ならばRe(z)>0であって、そこでlim[|z|→∞]e^z=∞ である。これに注意して(2)を用いると、|z|>0, |argz|<Π/2 において、
e^(1/z)~1+1/(z・1!)+1/(z^2・2!)+…  …(3)
e^(1/z)+e^(-z)~1+1/(z・1!)+1/(z^2・2!)+… …(4)
すなわち、この二つの関数は同一の漸近展開を持っている。以上は教科書からの抜粋です。

(3)式の右辺第二項の係数(1/1!)や第三項の係数(1/2!)が(2)式の第2、第3式からどのような過程で求められるのか、わかりやすく教えて下さい。
分かり辛い書き方ですみませんが、宜しくお願いします。

独学中のものです。
f(z)~(a_0)+(a_1)/z+(a_2)/z^2+…+(a_n)/z^n …(1)
関数f(z)の漸近展開が(1)のとき、係数(a_0),(a_1),(a_2),…は次のようにして求められる。
『lim[|z|→∞]f(z)=a_0
lim[|z|→∞]z{f(z)-a_0}=a_1
lim[|z|→∞]z^2{f(z)-(a_0)-(a_1)/z}=a_2
 ………………………………………………
          (ただし z∈D )    』…(2)
このようにf(z)が漸近展開を持てば、それは一意的に定められるが、逆は成り立たない。すなわち相異なる二つの関数が同一の漸近展開を持つことがある。
たとえば|argz|...続きを読む

Aベストアンサー

|z| → ∞ ってことは, x = 1/z とおくと x → 0 ですね. そこから, 「e^x は何回微分しても e^x である」とか「L'Hospital の定理」とかを使えば
lim z [e^(1/z) - 1] = lim (e^x-1)/x = e^0 = 1 とか
lim z^2 [e^(1/z) - (1 + 1/z)] = lim (e^x - (1 + x))/x^2 = lim (e^x - 1) / (2x) = 1/2 とか
計算できます (z に対する lim は → ∞, x に対する lim は → 0 で).
もっとがんばれば Laurent 展開までいっちゃいますけど....

Qテイラー展開とマクローリン展開の語源に関する質問

テイラー展開はマクローリン展開の拡張であり、
マクローリン展開はテイラー展開のある制約のもとで成り立つ式です。
テイラー展開とマクローリン展開はどちらが先に生まれたのでしょうか?
なぜほとんど同じものである公式に全く別の人の名前がついているのでしょうか?

Aベストアンサー

追記:

件の教科書に引用されたマクローリンの論文には、
f(x) = Σ[n=0→∞] { (d/dt)^n f(t) [t=a] }/(n !)・(x-a)^n
という、いわゆるテイラー展開について書いてあり、
テイラーの教科書のほうは、それを
x = a + h で置換して、h の冪級数として扱っていた
そうなので、
「テイラー展開」と「マクローリン展開」の用語は、
歴史のどこかで入れ替わってしまったことになります。
歴史って、そんなものですが。

マクローリン、テイラーより以前に、テイラーの定理を証明した
例としては、ジェームズ・グレゴリが知られています。
http://ja.wikipedia.org/wiki/%E3%82%B8%E3%82%A7%E3%83%BC%E3%83%A0%E3%82%BA%E3%83%BB%E3%82%B0%E3%83%AC%E3%82%B4%E3%83%AA%E3%83%BC
映画俳優ではないほうの人です。

Q漸近展開について

漸近展開をo(x^3)を用いて書き表せ.

(1+x^2)cosx

という問題なのですが,

cosxのx^3の項までの漸近展開を求め, 用いることで

(1 + x^2) cos(x)
= (1 + x^2) (1 - 1/2 x^2 + o(x^3)) --- (1)

となったのですが, この段階で止まっています...

[答え]としては, ここから更に

= 1 - 1/2 x^2 + o(x^3) + x^2 - 1/2 x^4 + o(x^5) となり,
= 1 + 1/2 x^2 + o(x^3) となっています

どのようにすれば (1) から[答え]の形になるのでしょうか.

よろしくお願いします.

Aベストアンサー

o(xのn乗) というのは、
f(x)/(xのn乗)→0 (質問の場合、x→0 のとき)
となる f(x) の総称です。
ですから、1・o(xの3乗) も o(xの3乗) になるし、
(xの2乗)・o(xの3乗) は o(xの5乗) になります。
f(x)/(xの3乗)→0 なら、
(xの2乗)f(x)/(xの5乗)→0 ですからね。
o(xの3乗)+o(xの5乗) が o(xの3乗) になることも
同様に示せるでしょう。

Qテイラー展開とマクローリン展開の関係

テイラー展開とマクローリン展開の関係を簡単に教えてください。

Aベストアンサー

関数をベキ級数で
f(x) = Σ[n=0→∞] a[n]・x~n
と表すことを、マクローリン展開、
x-c のベキ級数で
f(x) =Σ[n=0→∞] b[n]・(x-c)~n
と表すことを、x=c を中心としたテイラー展開
といいます。

テイラーの有名な解析学の教科書には、
マクローリン展開のことが、
「マクローリン式の展開」として書かれており、
関数のベキ級数展開を普及させる
契機となりました。

しかし、
テイラーが参照したマクローリンの論文には、
今日言うところの、テイラー展開のことが
書いてあったのです。

名前が入れ替わってしまったことになります。
面白いですね。

Q誤差関数について

誤差関数、相補誤差関数は一体どういう目的でつくられたのでしょうか?用途なども教えていただければ幸いです。よろしくお願いします。

Aベストアンサー

誤差関数は正規分布(確率密度関数)を積分した累積密度関数です。
相補誤差関数は(1-誤差関数)です。

どちらもある値内に入る確率が求まります。
誤差関数は上限以下に入るもの、相補誤差関数は下限以上に入るものを与えます。

言い方を変えると正規分布について
誤差関数・・・ある値以下の部分の面積
相補誤差関数・・・ある値以上の部分の面積
ということです。

Qテイラー展開について教えてください。

テイラー展開に関する問題です テイ ラー展開に関する問題です。

(1)以下の関数のx=0を中心としたテイ ラー展開をし、一般項を書け。 (i)cosx (ii)1/(1-x) (2)x=0を中心とした1/(2-x^2)のテイラ ー展開をし、一般項を書け。
(3)x=0を中心とした(cosx)/(2-x^2)のテ イラー展開をx^6の項まで求めよ。 (4)lim[x→0](1/x^4){(cosx/(2-x^2))-(1/2)}を求めよ。

以上です。

自分でも求めたのですが、あってい るかが分かりません。 確認お願いします。

(1)(i)cox=Σ[n=0→∞]((-1)^n)(x^(2n))/(2 n)! (ii)Σ[n=0→∞]x^n

(2)1/(2-x^2)のテイラー展開は自信が ないのですが、これをテイラー展開 の式に代入して求めていくとすごく 時間がかかるので、 1/(2-x^2)=(1/2){1/(1-(x^2/2))}と変形し 、(1)の(ii)と同じようにして、Σ[n=0→ ∞](1/2)(x^2/2)^nとなりました。 果たして、これでいいのでしょうか ?

(3)たぶんこれは(1)と(2)の結果を使え ということだと思うのですが、これ は(cosx)と1/(2-x^2)のそれぞれの項を かければいいだけですか? たとえば、1項は、cosxの1項目の1 と、1/(2-x^2)の1項目の1/2をかけて 、1/2となるのでしょうか?

(4)これはちょっと分からないです。1 /x^4がかかっているので、テイラー 展開したものでも分母にxの項が入っ てしまい、発散しそな気がしたので すが、そんなはずはないので、よくわからないです

回答よろしくお願いします。

テイラー展開に関する問題です テイ ラー展開に関する問題です。

(1)以下の関数のx=0を中心としたテイ ラー展開をし、一般項を書け。 (i)cosx (ii)1/(1-x) (2)x=0を中心とした1/(2-x^2)のテイラ ー展開をし、一般項を書け。
(3)x=0を中心とした(cosx)/(2-x^2)のテ イラー展開をx^6の項まで求めよ。 (4)lim[x→0](1/x^4){(cosx/(2-x^2))-(1/2)}を求めよ。

以上です。

自分でも求めたのですが、あってい るかが分かりません。 確認お願いします。

(1)(i)cox=Σ[n=0→∞]((-1)^n)(x^(2n))/(2 n)! (ii)Σ[n=0...続きを読む

Aベストアンサー

方針はあってるがおしい. x^6 の係数を間違えてる (とはいえ x^4 まではあっているので (4) には影響しないという...).

1/2 を忘れた?


人気Q&Aランキング