漸近展開とテイラー展開の違いを教えてください。

A 回答 (1件)

直感的でよければ、参考URLのグラフを見るとわかります。



参考URL:http://homepage1.nifty.com/gfk/Zenkin_Tenkai.htm
    • good
    • 0
この回答へのお礼

参考になりました。ありがとうございました。

お礼日時:2009/05/31 21:26

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q漸近展開について

漸近展開をo(x^3)を用いて書き表せ.

(1+x^2)cosx

という問題なのですが,

cosxのx^3の項までの漸近展開を求め, 用いることで

(1 + x^2) cos(x)
= (1 + x^2) (1 - 1/2 x^2 + o(x^3)) --- (1)

となったのですが, この段階で止まっています...

[答え]としては, ここから更に

= 1 - 1/2 x^2 + o(x^3) + x^2 - 1/2 x^4 + o(x^5) となり,
= 1 + 1/2 x^2 + o(x^3) となっています

どのようにすれば (1) から[答え]の形になるのでしょうか.

よろしくお願いします.

Aベストアンサー

o(xのn乗) というのは、
f(x)/(xのn乗)→0 (質問の場合、x→0 のとき)
となる f(x) の総称です。
ですから、1・o(xの3乗) も o(xの3乗) になるし、
(xの2乗)・o(xの3乗) は o(xの5乗) になります。
f(x)/(xの3乗)→0 なら、
(xの2乗)f(x)/(xの5乗)→0 ですからね。
o(xの3乗)+o(xの5乗) が o(xの3乗) になることも
同様に示せるでしょう。

Q共役or非共役の見分け方

有機化学や高分子化学の勉強をしているのですが、どういうものが共役で、どういうものが非共役のものなのか、いまいち確信をもって見分けることができません。
なんとなく電子がぐるぐる動いていて、二重結合の位置が常に変わっている(共鳴している?)もののことを共役系と言っている気はするのですが、具体的にどんな形をしたものとか、どんな構造が含まれていたら共鳴していると言うのかがよくわからないでいます。
非常に基礎的なところでつまずいてしまい、なかなか先に進めなくて困っていますので、ぜひご回答よろしくお願い致します。

Aベストアンサー

共役しているものの代表は、1,3-ブタジエン
H2C=CH-CH=CH2
(単結合と二重結合が交互に存在)です。
二重結合をしている炭素では、隣り合う炭素の上下に伸びているp軌道同士がくっついています(sp2混成軌道はご存じですか?参考URLの図のC1とC2、C3とC4の青い軌道はくっついて1つになっています)。
通常、単結合をしている炭素(sp3混成軌道)には上下に伸びているp軌道はありません。
ところが、共役をしていると、左から2番目のp軌道と3番目のp軌道が近接しているために、単結合であるにも関わらずp軌道同士がくっついてしまって、あたかも二重結合を形成しているかのようになってるんです。
このようにして、炭素4つのp軌道が全部くっついているので、電子は自由に行き来できるのです(非局在化と言います)。共役物質が安定なのはこのためです。

少し踏み込んだ説明をしましたが、わかって頂けましたでしょうか…?

参考URL:http://www.ci.noda.sut.ac.jp:1804/classroom/1998_6_18/Q&A6_18_4.html

共役しているものの代表は、1,3-ブタジエン
H2C=CH-CH=CH2
(単結合と二重結合が交互に存在)です。
二重結合をしている炭素では、隣り合う炭素の上下に伸びているp軌道同士がくっついています(sp2混成軌道はご存じですか?参考URLの図のC1とC2、C3とC4の青い軌道はくっついて1つになっています)。
通常、単結合をしている炭素(sp3混成軌道)には上下に伸びているp軌道はありません。
ところが、共役をしていると、左から2番目のp軌道と3番目のp軌道が近接しているために、単結合であるにも関わらずp軌道同...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qカフェインをヨウ化カリウム水溶液に溶かして、硝酸ビスマス滴下したら何で橙の沈殿できるのでしょうか

カフェインをヨウ化カリウム水溶液に溶かして、硝酸ビスマス滴下したら何で橙の沈殿できるのでしょうか。
大学の課題で、手元に資料もなくネットで検索しても出てきません。
検索がへたなだけかもしれません。
自力でどうにか探すのが普通なのだと思いますが、こんな不束者に詳しい解説よろしくお願いします。

Aベストアンサー

ちょっと調べたらこんな楽しいサイトが、↓^o^
http://www.colawp.com/seasonal/199707/special.html
なになに、「分析化学においてはビスマス・アンチモンの検出試薬として用いられるらしい」などと書いてある。もっと探そう。
2chに「最近大学の実験でカフェインの存在確認の実験で、カフェイン粉末に10%KI溶液と硝酸ビスマス溶液を滴下して橙色沈殿の 有無の確認をするってのをしたんだが、…」てのがあるが、答えて貰ってないみたい。
結局こんな処が、↓
http://pubs.acs.org/cgi-bin/abstract.cgi/iecac0/1942/14/i01/f-pdf/f_i560101a016.pdf?sessid=6006l3
ビスマスのテトライオドビスマス(III) カフェインとしての定量。

Qarcsinのマクローリン展開について

arcsinxのマクローリン展開は、どのようにすればよいのでしょうか?

Aベストアンサー

マクローリン級数展開

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Qエクセル(Excel)で、数値を一定の有効数字で表示したいのですが…

エクセル(Excel)の書式設定の表示形式では数値を選択すると、小数点以下の桁数を揃えることができますが、同じ感覚で有効数字を一定にして表示させるにはどんな方法があるでしょうか?
例えば、0.01234、0.1234、1.1234、11.1234、111.1234という五つの値を、有効数字3桁を指定して表示して、順に0.0123、0.123、1.12、11.1、111という風に自動的に表示してくれる表示形式、あるいは関数を探しています。
事務計算で小数点以下何桁というのが重要であるように、技術計算ではこのように有効数字を揃えたい場合が多いと思いますので、どなたかご存じの方、お教えください。
なお、指数形式では似たような結果になりますが、わかりにくい表示なので使いたくありません。
よろしくお願いいたします。

Aベストアンサー

◆こんな方法もありますよ
=ROUND(A1,2-INT(LOG(ABS(A1))))

★「0」を考慮すると
=ROUND(A1,2-INT(LOG(ABS(A1)+(A1=0))))

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む

Qポテンシャルエネルギーから力を求めるのになぜ偏微分

こんにちは、力学を勉強しております。重力やばねの力が保存力である、ということを学ぶ際に、ポテンシャルエネルギーUを習いました。そして、このポテンシャルエネルギーを位置で微分して力を求める、という次の式が登場しました (~はベクトル表示のための矢印とお考え下さい)。

~F = -(∂U / ∂x) ~i - (∂U / ∂y) ~j - (∂U / ∂z) ~k .... (1)

ここで、なぜ偏微分なのでしょうか。

~F = -(dU / dx) ~i - (dU / dy) ~j - (dU / dz) ~k .... (2)

というように通常の微分では問題になるのでしょうか。

たとえばバネの ポテンシャルエネルギーはU = (1/2)k x^2なので
これを上式(1)のように微分すれば、F = -kxとなります。重力にしても同様に求まります。
ただ、(2)式を使っても、ばねの力も重力も求まってしまいます。

偏微分を使っているからには、その理由があると思うのですが、私の持っているどの教科書にもその説明がなく、突如として偏微分が示されているだけでして悩んでおります。

どうぞ宜しくお願いします。

こんにちは、力学を勉強しております。重力やばねの力が保存力である、ということを学ぶ際に、ポテンシャルエネルギーUを習いました。そして、このポテンシャルエネルギーを位置で微分して力を求める、という次の式が登場しました (~はベクトル表示のための矢印とお考え下さい)。

~F = -(∂U / ∂x) ~i - (∂U / ∂y) ~j - (∂U / ∂z) ~k .... (1)

ここで、なぜ偏微分なのでしょうか。

~F = -(dU / dx) ~i - (dU / dy) ~j - (dU / dz) ~k .... (2)

というように通常の微分では問題になるのでしょうか。

たと...続きを読む

Aベストアンサー

まず、微小変位について仕事がどう書かれるかはわかっていますか?
仕事は一次元運動では力×移動距離ですが、三次元運動では力のベクトルと変位ベクトルの内積になります

ΔW = F・Δr (F, Δrはベクトル)

次に、位置エネルギーの定義ですが、位置エネルギーは仕事の符号を変えたものですから、
この微小変位による位置エネルギーの変化分は

ΔU = - ΔW = - F・Δr = - ( Fx Δx + Fy Δy + Fz Δz ) (*)

ここまでよろしいでしょうか?

次は純粋に数学の問題で、U(x+Δx,y+Δy,z+Δz)をテーラー展開して1次までとると

U(x+Δx,y+Δy,z+Δz) = U(x,y,z) + (∂U/∂x)Δx+ (∂U/∂y)Δy+ (∂U/∂z)Δz

ここで

ΔU = U(x+Δx,y+Δy,z+Δz) - U(x,y,z)

と定義すれば

ΔU = (∂U/∂x)Δx+ (∂U/∂y)Δy+ (∂U/∂z)Δz

が成り立ちます。つまり、1次までの微小変化であれば、

y,zを止めてxだけ変えたときの変化分、
x,zを止めてyだけ変えたときの変化分、
x,yを止めてzだけ変えたときの変化分、

の合計が全体の変化分に等しいという関係が成り立ちます。
これが全微分ではなく編微分を使う理由です。


この式は

grad U = (∂U/∂x, ∂U/∂y, ∂U/∂z )
Δr = (Δx, Δy, Δz)

というベクトルを導入すれば内積を使って

ΔU = grad U ・ Δr

と書くことができます。

この関数U(x,y,z)を位置エネルギーだとすると、ΔUは微小変位Δr = (Δx, Δy, Δz)に対する位置エネルギーの変化分となりますから、上の(*)の式に等しく

ΔU = grad U ・ Δr=ΔU = (∂U/∂x)Δx+ (∂U/∂y)Δy+ (∂U/∂z)Δz
   =- F・Δr = - ( Fx Δx + Fy Δy + Fz Δz )

この二つの式を見比べれば

F = - grad U

成分表記では

Fx = -∂U/∂x
Fy = -∂U/∂y
Fz = -∂U/∂z

となります。

>というように通常の微分では問題になるのでしょうか。

3次元の調和振動子を考えて見ます。その位置エネルギーは

U(x,y,z) = (1/2)k (x^2 + y^2 + z^2)

これを通常の微分をとるとすると、物体は3次元空間の中をある軌道で運動していますから、xの変化と同時にyもzも変化します。つまり、yとzはxの関数と考えられるので

dU/dx = d/dx [ (1/2)k (x^2 + y(x)^2 + z(x) ^2) ]
= k x + k y(x) dy/dx + k z(x) dz/dx

となり、x方向の力kxを導きません。

まず、微小変位について仕事がどう書かれるかはわかっていますか?
仕事は一次元運動では力×移動距離ですが、三次元運動では力のベクトルと変位ベクトルの内積になります

ΔW = F・Δr (F, Δrはベクトル)

次に、位置エネルギーの定義ですが、位置エネルギーは仕事の符号を変えたものですから、
この微小変位による位置エネルギーの変化分は

ΔU = - ΔW = - F・Δr = - ( Fx Δx + Fy Δy + Fz Δz ) (*)

ここまでよろしいでしょうか?

次は純粋に数学の問題で、U(x+Δx,y+Δy,z+Δz)をテーラー展開して1次までとる...続きを読む

QTOEFL ITPのスコアについて教えてください。

こんにちは。
大学でTOEFLのテストを受けました。
結果は443?点でした。
ですがこのスコアはどの程度のものなのでしょうか?
というのも、こんな成績で恥ずかしながら運良く入試がよく解けて大学の特待生として入学したので、傑出していなければ落とされてしまうのではと不安でたまりません。
偏差値60前後の大学なのですが、その新入生としてはやはり悪い数字でしょうか?
実際に、500点が留学の基準と言われていますよね?
それには少なくても満たないし…。
入試が終わってから一ヶ月サボったつけが回ってきたと後悔しています。
回答よろしくお願いします。

Aベストアンサー

ITPの場合は、満点が677点。でCBTやibtとの換算表においては、PBTとまったく同じ点数となります。
http://www.ncc-g.com/page33.html
443点ということは、cbtで127、ibt43と同じということですが、ibt43が高校卒業と同じぐらいのレベルですから、大学1年生としては妥当なスコアだと思います。これから努力すればスコアは上げられますよ。
http://eq-g.com/article/exam/exam-hikaku/


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報