ついに夏本番!さぁ、家族でキャンプに行くぞ! >>

まず、(a,bは定数)x=acosθ+bcosψを時間(t)で微分します。
するとdx/dt=-a(dθ/dt)sinθ-b(dψ/dt)sinψ-(1)と
なるのはなんとなく分かるのですが。
(1)式をさらに時間(t)で微分すると、
(d^2x/dt^2)=-a(d^2θ/dt^2)cosθ-b(d^2ψ/dt^2)sinψ-b(dψ/dt)^2cosψ-(2)になるのがまったく分かりません。
どうして(1)式をさらに時間微分するとψの項が2つ出現するのか
がまず?です。
何度も先生に聞いたりしましたが、よく分かりませんでした。
どなたか、解き方を教えて下さい。
よろしくお願いします。

A 回答 (2件)

>(d^2x/dt^2)=-a(d^2θ/dt^2)cosθ-b(d^2ψ/dt^2)sinψ-b(dψ/dt)^2cosψ-(2)になるのがまったく分かりません。



この式は間違っていますので、誰も理解できるはずがありません。

正しい計算は以下のとおり。

d^2x/dt^2=-a{(dθ/dt)sinθ}'-b{(dψ/dt)sinψ}'
=-a{(dθ/dt)'sinθ+(dθ/dt)(sinθ)'}-b{(dψ/dt)'sinψ+(dψ/dt)(sinψ)'}
=-a{(d^2θ/dt^2)sinθ+(dθ/dt)^2(cosθ)}-b{(d^2ψ/dt^2)sinψ+(dψ/dt)^2(cosψ)}

後は括弧を外すなど式を整理するだけ。
    • good
    • 1
この回答へのお礼

やっぱり間違っていましたか・・
正しい計算まで示していただき本当に
ありがとうございます。
参考にしてもう一度、計算しようと
思います。回答ありがとうございます!

お礼日時:2009/05/24 14:58

ψの項が2つ出てくるのは、積の微分法です。


(fg)' = f'g + fg'

θの方からも2項出てくるはず。
    • good
    • 0
この回答へのお礼

そうですよね、もう一度トライしてみます。
回答ありがとうございます。

お礼日時:2009/05/24 14:56

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qタンジェントとアークタンジェントの違い

タンジェントとアークタンジェント、サインとアークサイン、コサインとアークコサインの違いをすごく簡単に教えてください。

Aベストアンサー

タンジェントやサイン、コサインは、角度に対する関数です。
例えば
 tan60°=√3
のような感じで、角度を入力すると、値が出てきます。

逆に、アークタンジェントなどは、数値に対する関数です。
 arctan√3=60°
などのように、数値を入力すると角度が出てきます。

そして、タンジェントとアークタンジェントの関係は、
springsideさんも書いてありますが、逆関数という関係です。
逆関数というのは、原因と結果が逆になるような関数です。
例えば、
  45°→タンジェント→1
  1  →アークタンジェント→45°
のように、「1」と「45°」が逆の位置にありますよね?
こういう関係を、「逆関数」というんです。

どうでしょう、わかりましたか?

Q単振り子の運動方程式

重力加速度g、質量m、紐の長さl、空気抵抗無視。

単振り子の運動方程式はこうなりますよね。
mlθ"=-mgsinθ
これがよくわからないのです。
どういう座標系についての運動方程式なのですか?

軌道にそってx軸を定めると
θl=x
mx"=-mgsinθ  軌道に沿った運動方程式?
⇔mlθ"=-mgsinθ  どういう座標系の運動方程式なの?
そしてこれの一般解はどういう風になりますか?
初期条件としてt=0でθ=φとします。

Aベストアンサー

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」などとわざわざ断っていないわけです。
極座標系に移行したことで問題の本質はx(t), y(t)の代わりにl(t), θ(t)を求めることに帰着します。大抵の場合はひもは伸び縮みしないと仮定しますのでlについて解く必要はなく、θについてのみ解くことになります。その方程式が
ml(d^2θ/dt^2)= -mg sinθ  (3)
なわけです。

しかしこの方程式は初等関数の範囲では解くことが出来ません。そこで初等物理の範囲ではθが小さい場合に限って問題を考えることにし、
sinθ≒θ  (4)
の近似を行って解きます。このとき(3)は
ml(d^2θ/dt^2) = -mg θ  (5)
となります。これの解き方はいろいろあります。線形微分方程式の理論を知っていれば解は直ちに
θ= C sin{√(g/l) t+α} ←Cは定数  (6)
だと分かります。αはC sinα=φを満たす定数です。
2階の微分方程式ですが初期条件が「t=0でθ=φ」の一つしか与えられていないので、定数が一つ未定のまま残ります(*1)。

愚直に微分方程式を解くのであれば下のようにやります。
l(d^2θ/dt^2)(dθ/dt) = -g θ(dθ/dt)
d/dt {(dθ/dt)^2} = -(g/l) d/dt (θ^2) ←両辺に(dθ/dt)をかけた上で、積の導関数の公式((y^2)'=2y y')を逆に使った
(dθ/dt)^2 = -(g/l) θ^2 +C1 ←C1は積分定数
dθ/dt = √{-(g/l) θ^2 +C1}  (7)
ここでθ=√(l/g)√C1 sinψと変数を変換すると
dθ/dt = √C1√(1-sin^2 ψ)  (8)
を経て
√(l/g)√C1 cosψ dψ = √C1 cosψ dt  (9)
と変形でき、両辺を積分することで
√(l/g) ψ= t+C2 ←C2は積分定数  (10)
を得ます。θの表式に戻すと
θ=√(l/g)√C1 sin{√(l/g) (t+C2)}  (11)
となります。これは本質的に(6)と同じ式です。初期条件「t=0でθ=φ」を代入することで
φ=√(l/g)√C1 sin{√(l/g)C2}  (12)
を得ます。これを使うと(11)からC1, C2のいずれかを消去できます。初期条件がもう一つあれば運動は一意に定まります(脚注参照)。

もちろん、「軌道に沿ってx軸を定める」でも解けます。この場合の運動方程式は
m(d^2 x/dt^2)= -mg sin(x/l)  (13)
となります。本質的に(3)と同じであることは申し上げるまでもなく、同様に解くことができます。

考え方は上記でよいはずですが中間で計算ミスがあるかも知れませんので、ONEONEさんご自身でも確認しながら読んで頂けると幸いです。

*1 もし初期条件が「t=0でθ=φまでおもりを持ち上げて手を放す」という意味であれば、「θの最大値はφ(厳密には|φ|)」という条件が新たに加わるので運動は一意に定まります。この場合はφsinα=φからα=π/2、よってθ=φsin{√(g/l) t+(π/2)}=φcos{√(g/l) t}と求めることができます。

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」...続きを読む

Qエクセルギーが分かりません

 今エクセルギーを勉強しているのですが いまいち理解が出来ません。エクセルギーとは「ある系が周囲温度と平衡に達するまでに、他の系に与える最大仕事のこと」だとは分かりました。
 このエクセルギーの計算ですが、調べたHPで系の温度と周囲温度の値による熱エクセルギー比の変化というものがありました。
 この式は熱エクセルギーξが
ξ=E/Q=m(h-h0){1-T0/(T-T0)lnT/T0}...(1)
  で求めていました。この式は
熱効率ηmax=1-T0/T
 と指すものが同じだと思うのですが値を代入してみると(1)とは違った値が出てきます。これは何故でしょうか?何故エクセルギはW=η×Qと明確に区別するのでしょうか?どなたか分かりやすく教えていただけないでしょうか。

Aベストアンサー

<<3補足
はい。そのとおりです。

なお、♯3の訂正です。

カルノーサイクルでは、熱源の温度は十分大きいとしていて×→熱源の大きさは十分大きいとしていて

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qwordでドットをつける方法

wordで科学系の論文を書いてます。
その中で、m の上にドット(・)をつけて流量を表す記号にするために、
wordの書式で傍点をつける設定にしたのですが、
m とドット(・)の間の隙間が広すぎて不恰好になってしまいます。
m のすぐ上に・をつけるよい方法はないでしょうか?
よろしくお願いします。

Aベストアンサー

ルビに・を入れて、フィールドコードを書き換える方法
です。
(フォントはMS明朝、10.5ポイントでやりました)
 ●mを入力し選択
 ●ルビ→読みに・(中点)を入れ→OK
 ●入力された文字を右クリックし
  「フィールドコードの表示/非表示」をクリック
 ●フィールドコード内、hpsの次の数字を半角で16に、
  ( . )の前の数字を5に書き換え
 ●フィールドコード内で右クリックし、「フィールドコード
  の表示/非表示」をクリック
とやったら、きれいにできましたが、どうでしょうか?
 
 

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

QP制御、PI制御、PID制御それぞれメリット、デメリットを教えてくれま

P制御、PI制御、PID制御それぞれメリット、デメリットを教えてくれませんか?
レポート課題で困っています。調べてみたが良くわかりませんでした。

Aベストアンサー

制御の基本は、P(比例)動作ですが、P動作だけでは通常オフセット(目標値との残留偏差)が生じます。このため、P動作のオフセットを無くすため、I(積分)動作を加え、設定値との偏差をなくすようにします。また、D動作を加えることにより、偏差を単時間に修正することができますが、積分時間を短く設定しすぎると、ハンチングが起きやすく、安定した制御が得られなくなります。D(微分)動作は、偏差の少ないうちに大きな修正動作を加え、制御結果が大きく変動するのを防ぐことができるます。ただし、微分時間を長く設定しすぎると、小さな変化に対しても、大きな出力が出てしまう為、ハンチングが生じ、制御性が安定しなくなります。

詳しくは、以下のURLを参照のこと。

参考URL:http://www.compoclub.com/products/knowledge/jidou_seigyo/jidou_seigyo4.html

Q倒立振子の運動方程式

図に示した倒立振子の運動方程式を導出の仕方含め教えていただきたいです。
二足歩行するロボットの脚をモデル化したもので、
入力は支点周りのトルクτと、脚を伸縮させる蹴り力fです。

検索して調べると、
トルクτをゼロとして計算を進める形は見つかるのですが、
トルクτを考慮して運動方程式を立てるとするとどうなるのかがわかりません。
お教えいただけると助かります。よろしくお願いします。

Aベストアンサー

えーと、ラグランジアンは

v = dr/dt, ω=dθ/dt
とすると

L = (1/2)Mω^2 + (1/2)Mr^2ω^2 -Mrg cosθ

d/dt(∂L/∂v) - ∂L/∂r = M dr^2/dt^2 - mrω^2 + Mg cosθ = f
d/dt(∂L/∂θ) - ∂L/∂θ = M dθ^2/dt^2 - Mgr sinθ = τ

となります。で r と θ に対応する外力が、何故 f と τ
になるかというあたりは、解析力学の本を読んでみてください。

Q剛体振り子の周期

剛体振り子の運動方程式 I(θの2回微分)=-Mghθ
から、普通に
周期T=2π√(I/Mgh)
と教科書に書いてあるのですけど、この周期Tはどうやって求めたのでしょう?計算の仕方がわからないので教えてください☆お願いします!
T=2π/ωと、ω=(θの微分)を用いるのはわかるんですけど・・・。

Aベストアンサー

これはθに関する微分方程式を解かなければいけません。
すなわち
dθ^2/dt^2 = -Aθ
(A=Mgh/I)
これは、よく教科書に書いてある形の微分方程式なのですが、解き方をここに書くのは、ちょっと面倒なのでご勘弁ください。

代わりに、方程式から周期を求める簡易な方法を紹介します。

θはtの三角関数になることは、わかっているものとします。

そうすると
θ = a・sin(ωt+c)
tで一回微分すると
dθ/dt = ab・cos(ωt+c)
もう1回tで微分すると
I = dθ^2/dt^2 = -a・ω^2・sin(ωt+c)

これらを当初の方程式に代入すれば
-a・ω^2・sin(ωt+c) = -A・a・sin(ωt+c)
よって
ω=√A=√(Mgh/I)
T=2π/ω=2π√(I/Mgh)