リプルと静電容量の関係って何ですか??・・・簡単にお願いします

A 回答 (2件)

静電容量が大きい程リプルを防ぐことができます。


が、使用電力が大きいと発生しやすくなるので、更に大きな容量が必要となりますね。
要するに静電容量はリプル(凹凸)を埋めるバッファーの役割をするのです。
    • good
    • 1
この回答へのお礼

よくわかりました(^_-)-☆彡

レポートもちゃんと出せます(^^♪

教科書にわ載ってなかったのでホント助かりました

お礼日時:2009/05/25 19:41

交流を直流に変換する時に整流回路と平滑回路を使用します。


平滑回路には大容量のコンデンサが使用されますが、静電容量が大きいほど直流出力に含まれるリップル電圧は小さくなります。
整流回路を全波整流回路、平滑回路をコンデンサ入力形と仮定した時リップル電圧ΔE(p-p)は次の式で表されます。
ΔE=0.27XEDCXIDC/(fXCXE)
但し、EDC:直流出力電圧 IDC:直流出力電流 f:交流周波数
    C:平滑コンデンサの静電容量
整流回路を半波整流回路、平滑回路をコンデンサ入力形と仮定した時リップル電圧ΔE(p-p)は次の式で表されます。
ΔE=0.75XEDCXIDC/(fXCXE)
但し、EDC:直流出力電圧 IDC:直流出力電流 f:交流周波数
    C:平滑コンデンサの静電容量
   
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qリップルについて

出力電流を大きくするとリップル電圧が大きくなるのはどうしてですか?また,リップル率が大きいと何が不都合なのでしょうか?よろしくおねがいしますm(_ _)m

Aベストアンサー

1.>出力電流を大きくするとリップル電圧が大きくなるのはどうしてですか?

先ず半波整流回路で説明します。
http://www.picfun.com/partpwr.html
上から1/4くらい・・・[整流平滑回路]の(1)半波整流回路 のところを見てください。
(この回路図は不十分です。本当は、[Vout]と[0]の間に負荷がつながります。これを仮に[R1]とします)

もし、コンデンサ(C1)がないと、出力には「整流直後の波形」のような波形が現われます。(リプル率100%)
C1があると、入力電圧が下降のサイクルに入っても、”コンデンサから電流が供給される”ので、電圧はあまり下がらず、「平滑後の直流波形」中の赤線のようになります。
(この図は、ほぼリプル率50%です)

コンデンサの容量が十分大きいと、谷の部分がほとんどなくなります。(リプル0に近付く)
コンデンサの容量が小さいと、直ぐに放電仕切ってしまい、間に電圧0Vの箇所ができることがあります。

この図からおわかりのように、コンデンサC1の容量が同じ場合、負荷抵抗R1が小さいと、大電流が流れるので、放電が早くリプルは大きくなります。
リプルを同じにするためには、大きい容量のコンデンサが必要です。

両波整流の場合は、同じ容量のコンデンサでも、放電しきらないうちに次の整流出力が供給されるので、リプルは小さくなります。
(同じリプルにするには、容量は小さくてよい)

リプルについては、下記のQ/Aもご参照ください。
もう少し詳しく解説しています。
http://security.okwave.jp/kotaeru.php3?q=2129380

2.>リップル率が大きいと何が不都合なのでしょうか?

オーディオアンプではハム(ノイズ)の原因になります。
ただし、アンプ回路にはデカップリング回路があり、更にリプルを減少させる機能があるので、通常数V以下なら問題になりません。
(プリアンプであればもっと厳しい)

また、リプルがあるということは、電源電圧が低いのと同じであり、最大出力の確保ができなくなります。
(オーディオアンプでも無線送信機でも同じ)

一般に、アンプの出力と電源電圧の関係は、
  W=Vcc^2/8RL
の関係で表されます。ただし、
  W:最大出力
  Vcc:電源電圧
  RL:負荷抵抗

例えば、負荷抵抗8Ωで100Wの出力を出すためには、80Vの電源が必要です。

ここで、整流後の尖頭電圧100V,リプル率30%の電源は、谷間で70Vになってしまうので、100W出力は出せません。
コンデンサの容量を上げて、リプル率20%にしてやれば、谷間でも80Vあり、最大出力100Wが確保できます。

ANo.2の方が言っておられるレギュレータ問題も同じです。
例えば、マージン1.0Vが必要な、出力8Vの3端子レギュレータは、入力9.0Vを確保してやらなければなりません。

整流後の尖頭電圧10.0Vでリプル率20%では、谷間で8.0Vとなりレギュレータの役目をしません。
コンデンサの容量を上げて、リプル率10%以下にする必要があります。

参考URL:http://www.picfun.com/partpwr.html

1.>出力電流を大きくするとリップル電圧が大きくなるのはどうしてですか?

先ず半波整流回路で説明します。
http://www.picfun.com/partpwr.html
上から1/4くらい・・・[整流平滑回路]の(1)半波整流回路 のところを見てください。
(この回路図は不十分です。本当は、[Vout]と[0]の間に負荷がつながります。これを仮に[R1]とします)

もし、コンデンサ(C1)がないと、出力には「整流直後の波形」のような波形が現われます。(リプル率100%)
C1があると、入力電圧が下降のサイクルに入っても、”コンデン...続きを読む

Q整流回路(平滑化とリップル率)

交流から直流を得るために、ダイオードブリッジによる整流回路を組み、電圧を平滑化するためにコンデンサーを追加して、コンデンサーに並列に負荷抵抗を接続して電圧リップルを測定したところ、負荷抵抗の値が大きくするほど、リップル率が小さくなる傾向がみられました。
どういう理論でこうなるのでしょうか?CR回路の充放電特性が関係しているのですか?
お分かりになる方どうかよろしくお願いします。

Aベストアンサー

単純に放電によってです
充電しなながら放電しているのですが充電はピーク付近のみで(コンデンサの電圧と同じかより低いと充電されなくなるから)放電は常に放電されております
ですから負荷が無ければ放電はありませんのでコンデンサが不良で無ければリップルはありません
負荷電流が大きいと当然リップルは大きくなる訳です

Q過去質問 リプル電流の測定方法

一ヶ月以内(くらい)の質問で、リプル電流の測定方法を質問した方がおられましたが、ご記憶の方、いらっしゃいませんか?

カテは、ここか、科学か、オーディオあたりだったと思うのですが・・・
わかれば質問番号をお教え下さい。

Aベストアンサー

> 申し訳ないですが、書き込みに対して的確なご回答をください。
多分これでしょう.
質問番号:5083942
http://oshiete.eibi.co.jp/qa5083942.html
小生が以前答えたのはこちらです.
質問番号:3421848
http://oshiete.eibi.co.jp/qa3421848.html

Q電解コンデンサに流れるリップル電流測定方法について

アルミ電解コンデンサに流れるリップル電流量を知りたいのですが、
具体的な測定方法がわかりません。
初心者でもわかるように教えていただければ幸いです。
宜しく御願いします。

Aベストアンサー

用途(個人 or 企業)などにより異なると思いますが、より正確な電流を測定
したい場合は、次のような測定器にて測定しますと、測定値(ピーク値や
平均値他)や時間的変動状態を表示画面から読み取ることが容易にできます。
また、オプションにて波形やデータをプリントアウトすることも可能です。

1)オシロスコープ
2)電流プローブ

代表的なオシロスコープのメーカに[日本テクトロニクス]があります。
次のURLをクリックして参考にして下さい。

1)オシロスコープ
http://www.tek.com/ja/home/products.html

2)電流プローブ
http://www.tek.com/ja/products/accessories/current.html
測定する電流の大きさによりプローブの機種を選択します。

購入される場合は、メーカより機種の選定や測定方法などのアドバイスが
得られると思います。必要により電話相談されると良いと思います。
なお、測定器専門のレンタル会社からリースするようなこともできます。

用途(個人 or 企業)などにより異なると思いますが、より正確な電流を測定
したい場合は、次のような測定器にて測定しますと、測定値(ピーク値や
平均値他)や時間的変動状態を表示画面から読み取ることが容易にできます。
また、オプションにて波形やデータをプリントアウトすることも可能です。

1)オシロスコープ
2)電流プローブ

代表的なオシロスコープのメーカに[日本テクトロニクス]があります。
次のURLをクリックして参考にして下さい。

1)オシロスコープ
http://www.tek.com/ja/home/product...続きを読む

Q『リップル』とは?

電源系の話の中で、よくリップルという言葉を聞きます。
リップルってなんですか?

Aベストアンサー

主にACをDCに変換したときに残っている交流成分です。
平滑回路がプア-だとリップル成分が残りDCを必要としている回路に影響が出ます。
交流成分のMAXとMINの電圧差を直流成分の平均値でわったものをリップル率とします。

参考URL:http://www-nh.scphys.kyoto-u.ac.jp/~enyo/kougi/elec/node11.html

Q平滑回路の特徴について

(1)平滑回路には、コンデンサインプット形とチョークコイルインプット形がありますが、
コンデンサインプット形は、高電圧が得られるが、電圧変動が大きい
チョークコイルインプット形は、電圧変動が小さいが、高電圧が得られない
とあるのですが、この理由と言うか、回路を見てもなぜそうなるのかがわかりません。両者の特徴についてその原理を教えていただけないでしょうか。

(2)また、平滑回路にさらに直流にするためろ波回路なるものをつけるとあるのですが、どういうものなのでしょうか。

(3)また、このチョークコイルとはどういったコイルなのでしょうか?構造など一般的にいう鉄心に巻きつけたようなコイルとは違うのでしょうか。

Aベストアンサー

1.コンデンサ入力型では直流電圧が(理想的には)整流器出力のピーク値(交流電圧のピーク値)になります。それに対してチョーク入力では(理想的には)平均値になります。(チョークコイルが電圧の脈動分を吸収するため)
結果、コンデンサインプットの方が電圧が高くなります。(単相全波整流で1.5倍くらい)
また、コンデンサ入力では、交流一周期のうち、ダイオードが導通している時間は短くて、大半の期間はコンデンサから負荷電流を供給しています。このため負荷電流が増えるとコンデンサ端子電圧の低下が大きくなって、リプル電圧が増えると同時に平気電圧が下がります。
これにたいしてチョーク入力では、ダイオードが連続して導通していて、電圧低下が抑えられます。(ただし、チョークコイルが有効に働いてダイオードを連続して導通させるためには、コイルに常に電流が流れるよう一定以上の負荷電流を流す必要があります。軽負荷から無負荷の部分では急速に電圧が変化します。)

2.電圧の脈動分を除去する回路です。通常は直流電圧を安定化する回路が同時にフィルタ(ろ波)の機能も持っています。(ちなみに、チョークコイルや平滑コンデンサもろ波回路(の一種あるいは一部)です。

3.直流電流を流せるように作られているコイルです。普通に鉄心にコイルを巻いただけだと、直流電流で鉄心が磁気飽和してコイルとして作用しなくなります。これを防ぐために直流用のコイルでは鉄心の途中にギャップをつけて磁束密度が上がり過ぎないようにしています。

1.コンデンサ入力型では直流電圧が(理想的には)整流器出力のピーク値(交流電圧のピーク値)になります。それに対してチョーク入力では(理想的には)平均値になります。(チョークコイルが電圧の脈動分を吸収するため)
結果、コンデンサインプットの方が電圧が高くなります。(単相全波整流で1.5倍くらい)
また、コンデンサ入力では、交流一周期のうち、ダイオードが導通している時間は短くて、大半の期間はコンデンサから負荷電流を供給しています。このため負荷電流が増えるとコンデンサ端子電圧の低下が...続きを読む

Q周波数特性の利得の低下について

トランジスタの周波数特性についてお尋ねしたいことがあります。

周波数特性は台形のような形をしているのですが、低域周波数帯と高域周波数帯で利得が低下する原因が分かりません。
初心者でも分かるように簡単に説明してくれませんか?。よろしくお願いします。

Aベストアンサー

トランジスタの増幅回路で入力や出力の結合部分にコンデンサを使うことが一般的ですがこれが原因で増幅度が小さくなる事は有ります。

つまり
信号源→コンデンサ→増幅回路入り口
と言う場合コンデンサのリアクタンスは1/ωCで計算されますがここでω=2Πfですから周波数fが下がればリアクタンスが大きくなって結合が弱まりますね。また補正のためにエミッタアース間にもコンデンサを入れる事が多いですがこれは周波数が低くなると負帰還が多くなり増幅度は下がります。

逆に周波数が非常に高くなるとベース、エミッタ、コレクタ、各電極の配線などの浮遊容量などによって増幅度を下げる方向に作用します。
殊更高くなると半導体内部の電荷の移動時間すら問題になります。

Q整流回路の理論値

整流回路を使用して、入力にトランスを使用し、負荷抵抗(可変)Rlに流れる電流ioに対する出力電圧Vo(DC)、リプル電圧Vp(AC)を測定しました。また、その出力波形を観察しました。使用した整流回路は、(1)ダイオードとコンデンサに負荷抵抗を接続した回路、(2)CRリプルフィルタ((1)の回路に微分回路と負荷抵抗を接続)、(3)トランジスタを用いたリプルフィルタ、(4)定電圧回路、です。

これらの整流回路を用いたときの、出力電圧とリプル電圧の理論値を求めたいと思っています。
ダイオードを抵抗として考えると、出力電圧(DC)の理論値は求められるような気がしています。この考えは合っているでしょうか?
また、(1)の回路では、出力波形にみられるリプル成分の傾きを求め、リプル電圧の理論値が出せると思います。しかし、他の場合のリプル電圧の理論値の導き方が分かりませんでした。

参考書などを調べたのですが、それぞれの回路がどのような特徴があるといったことは書いているのですが、理論値の出し方は載っていませんでした。どなたか教えてください。お願いします。

整流回路を使用して、入力にトランスを使用し、負荷抵抗(可変)Rlに流れる電流ioに対する出力電圧Vo(DC)、リプル電圧Vp(AC)を測定しました。また、その出力波形を観察しました。使用した整流回路は、(1)ダイオードとコンデンサに負荷抵抗を接続した回路、(2)CRリプルフィルタ((1)の回路に微分回路と負荷抵抗を接続)、(3)トランジスタを用いたリプルフィルタ、(4)定電圧回路、です。

これらの整流回路を用いたときの、出力電圧とリプル電圧の理論値を求めたいと思っています。
ダイオードを抵抗として考えると、...続きを読む

Aベストアンサー

(1) の回路でリップル電圧をまともに計算すると以下のようになります(式の導出は省略します)。

ANo.2 の回路はちょっと書き直しました( 信号源の出力抵抗 R を Z としただけです )。

           Di
  Vin ┌─ Z ─ r ─┬──┐Vout        ┌──┐Vout
     │        │i1  │i2          │i1  │i2
   信号源       C ↓ RL ↓          C ↓ RL ↓
     │        │   │           │   │
     └────-─┴──┘           └──┘
    (1) 充電時                   (2) 放電時

        【 コンデンサインプット型整流回路 】

(1) 充電時の出力電圧
ダイオードがONのときの等価回路を抵抗 r、入力信号を Vin = A*sin(ω*t) 、充電開始時(t = 0 )の出力電圧を Vout = V[n] としたとき
   Vout = [ [ V[n]*{ ( R+ RL )^2 + ( ω+C*R*RL )^2 } + A*RL*{ ω*C*R*RL*cos(ω*t) - ( R + RL )*sin(ω*t) } ]*exp{ -( R + RL )*t/( C*R*RL ) } - A*RL*{ ω*C*R*RL*cos(ω*t) - ( R + RL )*sin(ω*t) } ]/{ ( R+ RL )^2 + ( ω+C*R*RL )^2 } --- (1)
となります。ただし、R = Z + r です。

(2) 放電時の出力電圧
放電開始時( t = 0 )の出力電圧を V[n+1] とすれば、ANo.2で計算したように
   Vout = V[n+1]*exp{ -t/( C*RL ) } --- (2)

(3) 十分時間が経過したときの Vout
(1)の計算では、初期電圧を V[n] と一般化しましたが、最初はゼロ( V[0] = 0 )とおけば、充電期間の最後( t = π/ω ) の電圧は、式(1)で V[n] = 0、t = π/ω としたときの値になります。この電圧は、次の放電の開始電圧に等しいので、その値を V[1] とすれば、その放電期間が終了した時の電圧は、式(2)で V[n+1] を V[1] に置き換えて、t = π/ω としたときの値になります(この計算では各区間の開始時間を t = 0 としています)。この値は次の充電期間の開始電圧となますが、このように、各サイクルの初期電圧はサイクル数が進むに従ってどんどん変わっていくので、最終的なVout の最大値と最小値を求めるのは一見困難です。しかし、十分時間が経過すれば、それらの電圧は一定値に収束するはずです。つまり、充電の開始電圧 V[n] は次の放電の終了電圧に等しくなるはずです。したがって、式 (2) で、 t = π/ω とした値は V[n] に等しいはずなので

   V[n] = V[n+1]*exp{ -π/( ω*C*RL ) } --- (3)

この式の V[n+1] というのは、その前の充電期間の終了電圧ですので、これは式 (2) で t = π/ω としたときの値 に等しいはずです。

   V[n+1] = [ [ V[n]*{ ( R+ RL )^2 + ( ω+C*R*RL )^2 } - A*ω*C*R*RL^2 ]*exp{ -π*( R + RL )/( ω*C*R*RL ) } + A*ω*C*R*RL^2 ]/{ ( R+ RL )^2 + ( ω+C*R*RL )^2 } --- (4)

式(3), (4) から

   V[n] = A*ω*C*R*RL^2*exp{ -π/( ω*C*R*RL ) }*[ 1 - exp{ -π*( R + RL )/( ω*C*R*RL ) } ]/{ ( R+ RL )^2 + ( ω+C*R*RL )^2 }/[ 1 - exp{ -π*( 2*R + RL )/( ω*C*R*RL ) } ] --- (5)
   V[n+1] = V[n]*exp{ π/( ω*C*RL ) } --- (6)

となって、最終的なVout の最大値と最小値が求められました。V[n] < V[n+1] なので、リップル電圧は

   ΔV = V[n+1] - V[n] = V[n]*[ exp{ π/( ω*C*RL ) } - 1 ]

(4) Vout の平均電圧
リップル率の計算には、Voutの平均電圧 Vm が必要ですが、これは、充放電時の波形がすでに計算できているので、それを時間で積分して、積分区間で割った値になります。この場合、積分区間は充電時も放電時も t =0 から π/ω になります(各区間の始まりを t = 0 としているので)。つまり

   Vm = ω/π*∫[ t = 0 ~ π/ω ] [ [ V[n]*{ ( R+ RL )^2 + ( ω+C*R*RL )^2 } + A*RL*{ ω*C*R*RL*cos(ω*t) - ( R + RL )*sin(ω*t) } ]*exp{ -( R + RL )*t/( C*R*RL ) } - A*RL*{ ω*C*R*RL*cos(ω*t) - ( R + RL )*sin(ω*t) } ]/{ ( R+ RL )^2 + ( ω+C*R*RL )^2 } dt + ω/π*∫[ t = 0 ~ π/ω ] V[n+1]*exp{ -t/( C*RL ) } dt

となります。この積分は難しくありませんが大変複雑な式となります。リップル率は ΔV/Vm で計算できます。

(1) の回路でリップル電圧をまともに計算すると以下のようになります(式の導出は省略します)。

ANo.2 の回路はちょっと書き直しました( 信号源の出力抵抗 R を Z としただけです )。

           Di
  Vin ┌─ Z ─ r ─┬──┐Vout        ┌──┐Vout
     │        │i1  │i2          │i1  │i2
   信号源       C ↓ RL ↓          C ↓ RL ↓
     │        │   │           │   │
     └────-─┴...続きを読む

Qコンデンサの放電時間の算出方法をお教え下さい。

十分に充電された300V、100μFの電解コンデンサの両足を
10kΩの抵抗でショートした場合、コンデンサに蓄えられた
電荷が全て放出されるまでに掛かる時間の求め方を
教えて頂けますでしょうか。

宜しくお願い致します。

Aベストアンサー

いつまで経っても電荷が全て放出されることはありません。
放電が進むと電圧が下がって流れる電流は少なくなります。
T秒で半分の電圧になるとすると、次のT秒で半分、次のT秒で半分・・・となって無限の時間が掛かります。

Qエミッタ接地増幅回路について教えてください><

教えていただきたいことは2つあります。
(1)エミッタ接地増幅回路はなぜ入出力波形の位相が反転するのでしょうか。
(2)エミッタ接地増幅回路はなぜ入力電圧が大きくなったとき出力波形が歪んでしまうのでしょうか。

1つでもわかる方がいらっしゃいましたらどうか回答よろしくお願いします。

Aベストアンサー

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波形の位相が反転することになります。

(2)
入力電圧Vbeが大きくなったとき出力波形が歪んでしまうのは、動作点が負荷線の線形動作範囲の上限に近づくとそれ以上Vceが頭打ちになって、出力電圧波形が飽和してしまいます。言い換えればコレクタ電圧Vceは接地電圧と直流電源電圧Vccの範囲でしか変化できません。その出力電圧波形は入力電圧Vbeが負荷線上の線形増幅範囲だけです。線形増幅範囲を超えるような大振幅の入力Vbeを入力すると出力電圧の波形が飽和して波形の上下が歪んだ(潰れた)波形になります。

お分かりになりましたでしょうか?

参考URL:http://www.kairo-nyumon.com/analog_load.html

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング