x=1/2{(1/3)の1/5乗+(1/3)の-1/5乗}のとき、
(x+√xの2乗-1)の5乗の値を求めよ。

√xの2乗-1は(ルートxの2乗)-1ではなく、ルート(xの2乗-1)です。

至急回答お願いします!!
すいません。。

「オリジナル数II 329(2)」の質問画像

このQ&Aに関連する最新のQ&A

A 回答 (5件)

すいません、肝心なところをタイプミスしてました・・・


訂正後のところだけ書いておきます。
-------------------------------------------------------
(1/3)^(1/5) = 3^(-1/5) > 3^(1/5) = (1/3)^(-1/5) となるので、
√(x^2 - 1) = 1/2 * {(1/3)^(-1/5) - (1/3)^(1/5)}
-------------------------------------------------------
不等号の向きとルートの計算結果のミスです。
    • good
    • 0
この回答へのお礼

ありがとうございました!!
おかげで解決しました♪♪

お礼日時:2009/05/24 21:26

又、うっかり。



(誤)t=x±√(x^2-1)である。、(1)より、P={x+√(x^2-1)}^5=t^5である。‥‥(2) から、2解のうちで大きいほうの解が求めるもの。つまり、t=(5)√a であるから、(2)において、P=a。 従って、P=1/3

(正)t=x±√(x^2-1)である。、(1)より、P={x+√(x^2-1)}^5=t^5である。‥‥(2) から、2解のうちで大きいほうの解が求めるもの。0<a<1であるから、{(5)√a}<{1/(5)√a}。(5乗して比べると分かるだろう) つまり、t=1/(5)√a であるから、(2)において、P=1/a。 従って、P=3。
    • good
    • 0
この回答へのお礼

ありがとうございました!!
やっと解決しました(笑)
3時間くらい考えてたんです!

お礼日時:2009/05/24 21:27

うっかりしてた。



(誤)t=x+√(x^2-1)であるから、(1)より、P={x+√(x^2-1)}^5=t^5である。‥‥(2)
t=(5)√a、or、1/(5)√a であるから、(2)において、P=a、or、1/a。 つまり、P=1/3、or、3。


(正)t=x±√(x^2-1)である。、(1)より、P={x+√(x^2-1)}^5=t^5である。‥‥(2) から、2解のうちで大きいほうの解が求めるもの。
つまり、t=(5)√a であるから、(2)において、P=a。 従って、P=1/3
    • good
    • 0

ルートの中から順番に計算していけばよいかと


まずは、x^2から
x^2 = 1/4 * {(1/3)^(2/5) + 2 + (1/3)^(-2/5)}
※{ }内の「2」がポイントです
両辺から1を引いて
x^2 - 1 = 1/4 * {(1/3)^(2/5) - 2 + (1/3)^(-2/5)}
= 1/4 * {(1/3)^(1/5)-(1/3)^(-1/5)}^2
ルートの中が{ }^2となるので、ルートを外すことができます。

が、このときにどちらの数字(1/5乗と -1/5乗)が大きいのかに注意しないといけません。
たとえば、底を 1/3から3に変えてみるとわかりやすいかもしれません。
(1/3)^(1/5) = 3^(-1/5) < 3^(1/5) = (1/3)^(-1/5)
となるので、
√(x^2 - 1) = 1/2 * {(1/3)^(-1/5) - (1/3)^(-1/5)}

xとの和は
x + √(x^2 - 1) = (1/3)^(-1/5)

これを5乗するので、答えは
(与式) = {(1/3)^(-1/5)}^5 = (1/3)^(-1) = 3
    • good
    • 0

1/3=aとすると、条件から、2x={(5)√a}+{1/(5)√a}。


P={x+√(x^2-1)}^5 ‥‥(1)
{(5)√a}*{1/(5)√a}=1から、{(5)√a}と{1/(5)√a}は、t^2-2xt+1=0の2つの正の解。
従って、方程式を解くと、t=x+√(x^2-1)であるから、(1)より、P={x+√(x^2-1)}^5=t^5である。‥‥(2)
t=(5)√a、or、1/(5)√a であるから、(2)において、P=a、or、1/a。 つまり、P=1/3、or、3。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q地図:バスのルート検索

googleでもyahooでも何でもいいのですが、地図検索でルートを調べたいのですが、電車ではルート検索できるのですが、バスのルート検索できません。

バスのルート検索ができるサイトとそのやり方を教えてください。

回答よろしくお願いします。

Aベストアンサー

直接、乗車バス停から降車バス停の時刻を調べることはできませんが、
私が愛用させていただいた、
『旅に出たくなるページ』内の『旅に出たくなる路線図』さんが昨年の12月31日をもって閉鎖されてしまいました。これが最高だったので残念です。
しかし、リンク集は残されていますので検索してみる価値は十分有ると思います。
http://ryokou.gozaru.jp/index.html

『時刻表はココから』さんには、各バス会社のホームページや、地域によっては、その地域全体を調べられるものも記載されています。
http://homepage2.nifty.com/fuguta/time/i/i-menu.html

『NAVITIME』さんは、全国の各バス停の発車時刻を調べることができますが、掲載されていないバス停が多々有ります。
http://www.navitime.co.jp/bus/

地域別では、
・関東地方 『バスサービスマップ』さん(路線図の検索)
http://www.geocities.jp/busservicemap/
・東海地方 『路線図ドットコム』さん(路線図の検索)
http://www.rosenzu.com/
・九州地方 『九州のバス時刻表』さん(停留所名で九州のほとんどのバスが検索できます)
http://qbus.jp/time/
などがあります。

miya_HN さんがどの地域をお探しかわかりませんが、手間がかかっても良ければ、各都道府県のバス協会等の大まかなバス路線図は存在すると思いますので、そこでバス会社を調べて、そのバス会社のホームページがあればそれを参照してみてはいかがでしょうか。

直接、乗車バス停から降車バス停の時刻を調べることはできませんが、
私が愛用させていただいた、
『旅に出たくなるページ』内の『旅に出たくなる路線図』さんが昨年の12月31日をもって閉鎖されてしまいました。これが最高だったので残念です。
しかし、リンク集は残されていますので検索してみる価値は十分有ると思います。
http://ryokou.gozaru.jp/index.html

『時刻表はココから』さんには、各バス会社のホームページや、地域によっては、その地域全体を調べられるものも記載されています。
http://homepage2...続きを読む

Qcosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 +

cosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 + {(x-π/4)^3/3!}・sin(θx)  
(0<θ<1)

f(x) = (4/π^2)・{2(x-π/4)(x-π/2)-√2・x(x-π/2)}
このグラフが分かりません…
教えてください!

Aベストアンサー

+ {(x-π/4)^3/3!}・sin(θx) は
+ {(x-π/4)^3/3!}・cos(θ(x-π/4)) ではないかと...違うかな?

で、これは cosx そのものです。θは x の関数なのでそれに惑わされないように。


下のはそれでなく、f(x)=(8/π^2){ (x-π/4)(x-π/2) - √2 x(x-π/2) } が正しいと思います・・・
このグラフは添付した図になります。
かなり近いです。

描き方は、計算機を用意して頂点を数値計算、あとは (0, 1) 、(π/4, 1/√2) 、(π/2, 0) を通るように二次関数のグラフを描けば良いです。
あるいはグラフ描画ソフトの力を借ります。

Q■地図ナビルート検索について!

■地図ナビルート検索について!
自宅のパソコンでルート検索できるソフトやサイトはありますか?
出来れば無料の物が良いのですが・・・? 有料でもOKです。

目的地と到着地を設定してルート検索ができるようなものを教えてください。
その他関連するご回答があればお願いいたします。m(_ _)m

Aベストアンサー

自動車であれば、
ルート検索‐NAVITIME
http://www.navitime.co.jp/drive/

電車であれば、
まるごとナビ|駅探
http://navi.ekitan.com/ppnavi/

などいかがですか。

Qx≧1の時2(√(x+1)-√x),2(√x-√(x-1)),1/√xの大小関係は

こんにちは。


x≧1の時2(√(x+1)-√x),2(√x-√(x-1)),1/√xの大小関係は?

という問題なのですが
2(√(x+1)-√x) < 1/√x < 2(√x-√(x-1))
という大小関係になると思います。
単に引き算してもなかなか2乗の形に持ってけません。
どうやって証明するのでしょうか?

Aベストアンサー

ヒントのみ
1/√xに着目して
分子の有理化をしてください。
そして、逆数の大小の比較(差をとって比較)してください。
大小関係が決まりますので、その逆数をとってもとの大小関係が決まります。
ただし、不等号の両辺が1より大か、小かを確認して逆数の不等号を考えてください。

結果の大小関係は正しいですね。

Qgoogle mapでのルート検索を良く利用していますが、一つ困ってい

google mapでのルート検索を良く利用していますが、一つ困っている事があります。

google mapが検索したルートを少しアレンジするのに白丸○で表されたポイントを
ドラッグすれば良いのですが、うまくドラッグ出来た試しがありません。

付近をぐるぐる何度も周回するようなルート地図が出来上がってしまいます。

何か途中のルートポイントを削除する方法などはあるのでしょうか?
みなさんはどのようにしてらっしゃいますか?

Aベストアンサー

補足確認しました。

(^^ゞ失礼しました言葉足らずでした。

不要なルート表示に○が有る時は○にカーソルを合わせて右クリックで、「このポイントを削除」で消せると思います。

無い場合は不要なルートを利用したいルートへドラッグで消えると思います。

>ちょっとごちゃごちゃした右左折の多いルート時なのか、時々ポイントをドラッグするとぐるぐる同じところを周回するんです。

ご指摘の様に表示してるルートと利用したいルートが近い場合はぐるぐると回る様な表示になりますね!

その様な場合は地図を拡大してルートを設定(上記の方法)を試して見て下さい、これは仕様だと思うので根気良く不要なポイント等を削除し続けて我慢するしか無いと思いますよ~?

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む

Q途中を指定できるルート検索サイト

ルートMAPを使っていますが、途中ポイントを指定して使用できません。
どこか途中ポイントを1-2点指定して検索できるサイトがあれば紹介お願いします。
→全て途中ポイントを目的地にして検索し足せばよいのはわかっていますが、あっちこっちポイントを変えたいので、、
使い方
  (1)目的地と出発地は決まっているのですが、途中観光する場所が3-4個所あるのでその組み合わせをそれぞれ指定して検索したい。
(2)検索条件を入れて検索しているが、部分的に自分の知っている最短ルートになっていない。そこでルートを指定して検索したい(私の方が絶対近いと思っているが、、、?)などなど

Aベストアンサー

 参考にならない意見ですいませんが、中継点を指定できるウェブ検索は、今のところまだないと思います。
(将来的には近いうちにどっかが始めると思いますが、2006年5月現在ではまだ見ないです)

 現在ルート検索で使われている処理方式は「可能性のある全てのルートを検索し、その中から最適なものを選ぶ」という処理方式が取られていることが多いです。
 そのようなアルゴリズムである関係上、「ウェブにルート検索を載せた」こと自体、実は凄いことなんです。

 中継点付きルート検索の場合、中継点の数だけ同じ検索を繰り返すため処理が2倍3倍と増えていく関係上、かなり潤沢な資金のある会社でなければ、それほどの能力を持ったシステムは導入できないのが実情です。
 地図検索サイトを運営する多くの会社にとって、ルート検索は一般に「おまけ機能」であることが多く、資金を裂けないわけです。

(カーナビに搭載された検索システムは、あなたが個人的に使うからこそ中継点指定ができるんです。
 ウェブ検索では何人もの人間が同時に使うのですから、みんなでサーバーの処理能力を譲り合わなければいけません。「みんなで分け合ってもなお余裕のあるシステム」となると、それなりに処理能力が求められるっちゅーわけです)

 参考にならない意見ですいませんが、中継点を指定できるウェブ検索は、今のところまだないと思います。
(将来的には近いうちにどっかが始めると思いますが、2006年5月現在ではまだ見ないです)

 現在ルート検索で使われている処理方式は「可能性のある全てのルートを検索し、その中から最適なものを選ぶ」という処理方式が取られていることが多いです。
 そのようなアルゴリズムである関係上、「ウェブにルート検索を載せた」こと自体、実は凄いことなんです。

 中継点付きルート検索の場合、...続きを読む

Qf(x)=A(x-2)(x-3)(x-4)+B(x-1)(x-3)(x-4)+C(x-1)(x-2)(x-4)+D(x-1)(x-2)(x-3)

(問題)xの三次関数f(x)があって、f(1)=1,f(2)=4,f(3)=9,f(4)=34であるとき、f(5)を求めなさい。

解答は別解がいろいろあったのですが、そのうちの一つがわかりませんでした。それは次のように書いてありました。

f(x)=A(x-2)(x-3)(x-4)+B(x-1)(x-3)(x-4)+C(x-1)(x-2)(x-4)+D(x-1)(x-2)(x-3) のように置くと、A,B,C,Dが容易に求めることができる。

なぜこのように表せるのか、どうしてこう思いついたのか、わかりません。考え方を教えてください。よろしくお願いいたします。答えはf(5)=97です。

Aベストアンサー

ranx さんの言うように、
x=1, x=2, x=3, x=4 の場合の解が与えられているので、
その際にどれかがゼロになるように、式を与えれば、
あとは、連立一次方程式で、元が4個で方程式が4本
なので、簡単に解けるわけです。

それぞれ代入した式4本を書いてみればわかると思います。解けるでしょ?
最後まで解かなくても、f(5) は、A,B,C,D を使って
出すことはできますね。

Q・カーナビのようにルート検索ができるサイト

・カーナビのようにルート検索ができるサイト

自宅のパソコンで出発地と目的地を入力してルート検索、距離、所要時間などがわかるカーナビのようなサイトを探しているのですが知っている方いませんでしょうか?
よろしくお願いします。

Aベストアンサー

マップファンを使っています。

http://www.mapfan.com/

『ルート検索』で多分ご希望どうりのものが出来ると思います。
ラリーマップは便利で楽しいですよ(笑)

QX+y=√5 ,xy=1のときの次の式の値を求めよ。 1) x2+y2 2) 1/x + 1/

X+y=√5 ,xy=1のときの次の式の値を求めよ。

1) x2+y2

2) 1/x + 1/y

3)x3 +y3

お時間ございましたら
解き方教えて下さい(_ _)

Aベストアンサー

1) x^2+y^2
=x^2+2xy+y^2-2xy
=(x+y)^2-2xy
=(√5)^2-2×1
=5-2=3

2) 1/x + 1/y
=y/xy+x/xy=y+x=√5

3)x^3+y^3
=(x+y)(x^2–xy+y^2) ← この変形は公式?をそのまま使う
2つ目の()内は1)の値を使う
=√5(3-1)=2√5


人気Q&Aランキング

おすすめ情報