はじめまして。

さっそくですが、この問題がわかりません。

a=(2,1)、b=(-1,3)のとき、c=(3,5)をma+nbの形で表せ

答えは
c=ma+nbより、(3,5)=m(2,1)+n(-1,3)
=(2m-n,m+3n)

したがって2m-n=3,m+3n=5 これを解いてm=2,n=1
よってc=2a+b

とあるんですが、

c=ma+nbより、(3,5)=m(2,1)+n(-1,3)
=(2m-n,m+3n)
のところがわかりません。だれか教えてもらえないでしょうか
あと、a,b,cの上には→があります

このQ&Aに関連する最新のQ&A

A 回答 (2件)

>(3,5)=m(2,1)+n(-1,3)=(2m-n,m+3n)



m(2,1)  = (2m, m)
n(-1,3)  = (-n, 3n)  (+
      ------------
      (2m-n, m+3n)
 
    • good
    • 0
この回答へのお礼

みなさん回答ありがとうございます

おかげで理解することができました

お礼日時:2009/05/24 19:57

ベクトルz=(x,y)においてx成分、y成分という呼び方をすると成分毎に係数m,nを掛けて加え合わせています。

x成分だけ、y成分だけ見ていけば分かります。
    • good
    • 0
この回答へのお礼

わかりやすい回答ありがとうございます

お礼日時:2009/05/24 19:55

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q固有値と固有ベクトルの図形的意味

質問です。
例えば行列(2,2|2,5)(←(1行目|2行目)という意味です。)の固有値λはλ=1,6で、λ=1に対する固有ベクトルは(-2 1)、λ=6に対する固有ベクトルは(1 2)となりますよね。
このとき固有値と固有ベクトルの図形的意味はどういう意味なのでしょうか?大学で学んだのですがいまいち理解できませんでした。

Aベストアンサー

まず、行列の意味を考えて見ます。

行列(2,2|2,5)にベクトル(1,1)を作用させます。すると、

(2,2|2,5)(1,1)=(2*1+2*1|2*1+5*1)=(4,7)

となります。もとの(1,1)と出てきた(4,7)は長さも違いますが方向も違います。このように、一般に行列にベクトルを作用させると長さと方向が異なるベクトルになります。

ここまでよろしいでしょうか?このように、行列は一般にベクトルを回転させるものであることを抑えて置いてください。

さて、こんどは固有ベクトル(-2,1)で同じことをして見ます。

(2,2|2,5)(-2,1)=(2*(-2)+2*1|2*(-2)+5*1)=(-2,1)

同じベクトルになりました。なので、このベクトル(-2,1)は行列を作用させても回転していません。ベクトルを定数倍しても同じ結果になりますから、(-2,1)と同じ方向のベクトルはすべて回転しないことになります。

このように、ある行列に対してベクトルを回転させない特殊な方向が固有ベクトルの向きです。

同じように、こんどは固有ベクトル(1,2)で同じことをして見ます。

(2,2|2,5)(1,2)=(2*1+2*2|2*1+5*2)=(6,12)= 6×(1,2)

ベクトル6×(1,2)は(1,2)と同じ方向ですから、やはりベクトルは回転していないことが分かります。ただし、その長さは6倍になっています。この倍数が固有値です。前の(-2,1)のときは同じベクトルですから1倍、これを強調して書けば1×(-2,1)で、実は、固有値が1だったということです。

これを難しく言えば、ANo.1さんが書かれている(1)、(2)になります。

まず、行列の意味を考えて見ます。

行列(2,2|2,5)にベクトル(1,1)を作用させます。すると、

(2,2|2,5)(1,1)=(2*1+2*1|2*1+5*1)=(4,7)

となります。もとの(1,1)と出てきた(4,7)は長さも違いますが方向も違います。このように、一般に行列にベクトルを作用させると長さと方向が異なるベクトルになります。

ここまでよろしいでしょうか?このように、行列は一般にベクトルを回転させるものであることを抑えて置いてください。

さて、こんどは固有ベクトル(-2,1)で同じことをして見ます。

(2,2...続きを読む

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Q座標の平行移動ではベクトルの成分が変化しないと言う意味。

ある参考書をみて座標の平行移動では、

ベクトルの成分が変化しない

と書いてありました。しかし、位置ベクトルの成分は変化していて、その理由に

”始点を固定している束縛ベクトルは、その成分が変わる。”

と書いてありました。意味が全然分かりません。始点の固定されていないベクトルは、成分が変化しないというのはどういう意味でしょうか?

Aベストアンサー

 
  分かり易いように、二次元で考えましょう。三次元の場合は、成分変数が一つ増えて、三個になるというのが違いです。
 
  二次元ヴェクトルは、二つのスカラー量(つまり、普通の数)で定義され、(x,y)みたいに書きます。こういう風に書いているヴェクトルは、「普通のヴェクトル」で、この成分xとyは、座標が平行移動しても変化しません。何故なら、こういう普通のヴェクトルは、特定の点に固定されておらず、どこか点を決めると、例えば、(2,4)というような座標上の点を決めて、ここを「始点」だとすると、(2+x,4+y)という点に向けて延びた形のヴェクトルになるからです。
 
  これは、(x,y)という非束縛ヴェクトルを、仮に(2,4)という点を始点として見た場合で、このヴェクトルは、好きな始点(a,b)を選ぶと、(x+a,y+b)という点が自動的に「終点」になるのです。(x,y)というヴェクトルは、始点か終点か何かを決めると、或る特定の位置に来るのですが、それを決めていない場合は、空間平面の自由な場所にあるとも云えるのです。
 
  平行移動というのは、X軸やY軸を「回転させず」、ただ、原点だけをX,Y軸に平行に移動させることです。以前に(3,5)だったところに原点(0,0)’が移動すると、平面上の図形などは、X軸は、-3、Y軸は-5移動したことになります。図形自体は動いていないのですが、枠である、座標軸が平行に移動したので、こういう風に図形のある座標値が変化するのです。
 
  平行移動の場合、非束縛ヴェクトルつまり普通のヴェクトルは、(x,y)も、(x-a,y-b)も同じことだったので(始点が一緒に移動すれば同じヴェクトルです。この場合、原点(0,0)を始点として、(x,y)を考えていたところ、原点が(a,b)に移動しても、(x-a,y-b)から(a,b)へと向かうヴェクトルになるので、実質ヴェクトルの成分は、(x,y)で同じなのです……図を描いて考えて見てください。言葉では、なかなか分かりにくいです。a,b,x,yなどに具体的な数を入れて考えると分かり易いです)。
 
===============================================================
  (以下、回転の場合の話で、パスしても構いません)
 
  ところが、座標軸の回転が起こると、例えば、原点を始点にした普通のヴェクトルの場合、(x,y)がたまたま(0,1)つまり、X軸の成分が0で、Y軸成分が1の場合を例に考えると、座標軸が45度反時計回りにまわると、以前のX,Y軸と45度の傾きに新しい座標ができ、元のヴェクトルは、(√2,√2)になります(これも図を描いて確認してください。言葉では分かりにくいです)。
 
  つまり、普通のヴェクトルも、座標軸が回転すると、成分が変化します。
 
  (ここまで、パスしてください)
===============================================================
  
  他方、「束縛ヴェクトル」というのは、始点とか終点が、どこか決まった所にあるのです。普通のヴェクトルは、好きな点を始点にでき、そこから、ヴェクトルを延ばしてよいのですが、束縛ヴェクトルは、この自由に選べるはずの「始点」や「終点」などが、決まっているヴェクトルです。
 
  「位置ヴェクトル」は、始点が原点にあるヴェクトルのはずです。その時、或る位置(a,b)に延ばした位置ヴェクトルは、普通のヴェクトルとして考えると、x軸の値がaで、y軸の値がbですから、(a,b)のヴェクトルということになります。けれども、このヴェクトルは、始点が原点で、終点が、決まった位置にあります。
 
  そこで、座標軸の平行移動が起こると、まずそれは原点が移動するということになります。(0,0)の原点が(α,β)に移動して、この点が新しい原点(0,0)’になるのが、平行移動です。最初の位置(a,b)は、新しい座標では、(a-α,b-β)’の位置に来ます。すると、原点を始点と決めた位置ヴェクトルは、(0,0)’から(a-α,b-β)’に延ばしたヴェクトルということで、X軸の成分が、a→(a-α)、Y軸の成分が、b→(b-β)で、成分が変化してしまいます。
 
  このように、始点を原点とかに決め、特定の位置へと延ばした位置ヴェクトルは、座標の平行移動で原点が移動すると、成分が変化するのです。しかし、この場合も先に述べたように、普通のヴェクトルは、始点も終点も自由に選べるので、成分は変化しないのです。(x,y)という普通のヴェクトルは、座標軸が平行移動しても、変化ないのです。
  

 
  分かり易いように、二次元で考えましょう。三次元の場合は、成分変数が一つ増えて、三個になるというのが違いです。
 
  二次元ヴェクトルは、二つのスカラー量(つまり、普通の数)で定義され、(x,y)みたいに書きます。こういう風に書いているヴェクトルは、「普通のヴェクトル」で、この成分xとyは、座標が平行移動しても変化しません。何故なら、こういう普通のヴェクトルは、特定の点に固定されておらず、どこか点を決めると、例えば、(2,4)というような座標上の点を決めて、ここを...続きを読む

Qmを自然数,nを奇数とするとき,2(1^n+2^n+…+m^n)がm(m+1)で割り切れる

mを自然数,nを奇数とするとき,2(1^n+2^n+…+m^n)が m(m+1)で割り切れることを証明したいのですが、あることに気づく必要があるといわれたのですが、それがどうもよくわかりません。

また、nが偶数のときには、何か別の性質があるのでしょうか?

Aベストアンサー

自然数をmで割った余りで分類する(剰余類)方法が分かっていればさほど難しい問題ではないですね

mが奇数なら自然数nはkを自然数として
n=mk,mk±1,mk±2,…,mk±(m-1)/2
mが偶数なら
n=mk,mk±1,mk±2,…,mk±(m-2)/2,mk+m/2
と表現できることに注意しましょう。


剰余で分類する問題だと、例えば

3で割り切れる数、3で割って1余る数、3で割って2余る数

のように分けることが多い気がしますが、3で割って2余る数を
3k+2=3(k+1)-1 (k=0,1,2,…)
と見れば
3k-1 (k=1,2,3,…)
と表現してもいいな、と分かりますね。
こう見るとnが奇数に限定されている理由も見えてくると思います。

余裕があったら、合同式などについても調べてみるといいかと思います。

Q量子力学においてベクトルポテンシャルが重要になってくる意味は?

量子力学ではポテンシャルはベクトルポテンシャルのみが
意味を持つということは有名な話ですが
これってなぜなのでしょうか?
どういうことからこれが分かるのでしょうか?
今までいろいろな量子力学の本を見てきましたが、
最初の前提からベクトルポテンシャルを考える、入っており
この理屈が分かりません。
また、逆に古典電磁気学においてベクトルポテンシャルがあまり意味を持たないのはなぜなのでしょうか?
どなたか教えて下さい。

Aベストアンサー

なんか誤解されているような。

量子論でもスカラーポテンシャルは必要だし、古典論でもベクターボテンシャルは必要ですよ。ベクトルポテンシャルもゲージを変えたらスカラーポテンシャルになったりしますよ。量子化の詳細やゲージ変換などを勉強されると良いと思います。

古典場の理論を勉強するには、ランダウリフシッツの場の古典論なんかがいいんじゃないでしょうか。記法が古臭いのがいただけませんのですけど。

Qa_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,

a_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,)のときの lim(n→∞)a_n をもとめよ。
途中し式も詳しく教えてください

Aベストアンサー

a_1=1
a_n≧1とすると
(a_{n+1})^2=a_n+1≧2
a_{n+1}≧√2>1

x^2=1+x
x=(1+√5)/2>1
a_{n+1}+x>2
(a_{n+1})^2-x^2=a_n-x
(a_{n+1}-x)(a_{n+1}+x)=a_n-x
|a_{n+1}-x|=|a_n-x|/(a_{n+1}+x)<|a_n-x|/2

|a_2-x|<|a_1-x|/2=(√5-1)/2

|a_{k+1}-x|<(√5-1)/(2^k)とすると
|a_{k+2}-x|<|a_{k+1}-x|/2<(√5-1)/(2^{k+1})

|a_{n+1}-x|<|a_1-x|/(2^n)

ε>0に対して (√5-1)/ε<n0 となる n0があり
n>n0 ならば |a_{n+1}-(1+√5)/2|<(√5-1)/(2^n)<(√5-1)/n0<ε
lim_{n→∞}a_n=(1+√5)/2

Q左固有ベクトルの幾何学的意味は,何でしょうか?

左固有ベクトルの幾何学的意味は,何でしょうか?

できれば直観的な説明を教えていただければ,幸いです.また,以下の記述におかしなところがありましたらご指摘願います.

右固有ベクトルに関しては,分かり易いです.右固有ベクトルuは,行列Aに右側から掛けられますから,Aによる変換を「受ける」立場にあります.変換「する」のはA,変換「される」のはuです.その幾何学的意味は,変換されも方向は変わらず(要素間の値の比は変わらず),大きさだけが変化する(各要素が,等しくL倍になる.このLが固有値)ということです.2次元あるいは3次元座標を紙に書いて,図示による説明も分かり易いです.

一方,左固有ベクトルvは,行列Aの左側に位置しますから,変換を「受ける」のはAのほうです.変換「する」のはv,変換「される」のはAです.変換の結果,a次正方行列であるAは,1行a列行列になります.その幾何学的意味は,???

よろしくお願い致します.

Aベストアンサー

「幾何学的に」「直観的に」ということなので、例えば、3次元座標空間内で言うと、
uはAの表す変換によりそれ自身に移る不動直線の方向ベクトルですが、
vはAの表す変換によりそれ自身に移る不動平面の法線ベクトルです。

vと垂直な不動平面をPとして、空間内の任意の点とPとの距離が変換Aによりどう変わるか見ると
点の取り方によらず、Aによる変換の前後では一定の比になります。
これがvに対する固有値に相当します。
変換後の点の位置は、固有値が正なら変換前と平面の同じ側、負なら反対側になります。

Qf(a+√b)=c+√b f(a-√b)=c-√b f(a+bi)=c+dif(a-bi)=c-di

f(a+√b)=c+√b
ならば
f(a-√b)=c-√b
は成り立ちますか。
√の中は変わらないので計算後も√bのままでいいでしょうか。

f(a+bi)=c+di
ならば
f(a-bi)=c-di
は成り立ちますか。
前回の質問が締め切られてしまいました。
前回回答いただきましたTacosanさま、かなり考えましたがヒントに最後まで答えることが出来ず、申し訳ありませんでした。一定の条件がわかりませんでした。こちらにも是非回答お願いいたします。詳しい回答本当にありがとうございました。

Aベストアンサー

反例:
xの一次式
f(x) = x ・(1-√2) + √2

f(1+√2) = (1+√2)・(1-√2) + √2
=1-2 + √2
=-1+ √2

f(1-√2) = (1-√2)・(1-√2) + √2
= 1 -2√2 + 2 + √2
= 3 - √2 ≠ - 1 - √2

---
f(x) = g(a,|x-a|) + (x - a)
と表せるなら
 f(a+√b) = g(a,|√b|) + √b = g(a,√b) + √b
 f(a-√b) = g(a,|-√b|) + (-√b) = g(a,√b) - √b
c = g(a,√b) とすれば
 f(a+√b) = c + √b
 f(a-√b) = c - √b
です。
ですが、 c + √b という形を見ただけでは、√b が「 + (x-a) 」に由来するものなのか、g(a,|x-a|)の|x-a|に由来するものなのか、g()に由来する xに依存しない定数√b なのか、判断できません。

Q固有値・固有ベクトルの物理的意味

初歩的質問です。行列に出てくる「固有値」「固有ベクトル」の物理的意味を分かりやすく教えてください。

Aベストアンサー

 具体例を3つあげます。(4)は一般論です。

(1)直行行列
 xとyをベクトル,行列Aを直交行列,y=Axとします。この場合Aの固有値は1(一般には±1)、固有ベクトルはAが表す原点まわりの回転の回転軸となります。何故なら、#1さんの仰るように、固有ベクトルは変換Aで動かないベクトルなので、回転の場合動かないのは、その回転軸です。また原点まわりの回転では、原点からの距離も不変なので、回転軸の倍率も1となります。

(2)振動方程式
 振幅の余り大きくない振動の微分方程式は、x"=Axとなります。ここでx"は、ベクトルxの時間に関する2階微分です。Aが対角形でないと解きにくいので、Aを対角行列に変換します。Aの固有ベクトルを並べた行列をSとすると、相似変換、
  y"=S(-1)ASy,x=Sy  (a)
が得られます。ここでS(-1)はSの逆行列、yはy=S(-1)xで定義されるベクトル,S(-1)ASは固有値が対角成分に並んだ対角行列です。よって式(a)のyの各成分は、他成分と連成しない(連動しない)分離された単振動の微分方程式となり、固有値の√は、おおくの場合、この振動系の固有振動数と呼ばれます。
 この分解は、振動系x"=Axのフーリエ分解とおおよそ等価です。固有振動数は位相スペクトルに対応し、yの各成分が振幅スペクトルに対応し、x=Syで得た解は、xのフーリエ分解とみなせます。

(3)構造の座屈方程式
 構造物の線形座屈現象は、「(A-λE)x=0がx≠0の解を持つ」というタイプの問題になります。ここでEは単位行列,λはスカラーです。これはdet(A-λE)=0となるλとxを探すのと同じで、行列Aの固有値問題そのものです。このときλは座屈荷重を表し、固有ベクトルxは座屈モードとなります。

 座屈荷重,座屈モードなどの用語はあえて説明しませんが、(1)~(3)より、「固有値・固有ベクトルの物理的意味」はケースバイケースです。そこで数学的な一般論を最後に付けます。

(4)一般論(ご存知でしたら、すいません)
 行列Aは、ある線形写像fを表します。線形写像とは要するに、多次元に拡張された1次関数の事です。一つの線形写像fに対して、それを表す行列Aは、じつは一つには定まりません。多次元(x-y-z-w-s-・・・軸で表せるもの)に入れる基底(座標軸)の方向によって、Aは色々姿を変えます。ある基底から別の基底への変換行列をSとした時、別の基底でAは、S(-1)ASという形になります。Sを特に固有ベクトルの方向に選ぶと、S(-1)ASは対角形(準対角形)になります。これが、線形写像fの基本構造です(準同型定理と根空間への分解定理)。逆に、一つの対角(準対角)行列Aに任意の正則行列Sで相似変換S(-1)ASを行った結果の全体は、Aに対応する線形写像fの表現行列全てです。従って「固有値と固有ベクトルが線形写像fの特徴づけを与える(fを定義してしまう)」ことになります。よって、固有値と固有ベクトルによって、その線形系の特徴を表せるので、(2)にように対角形に変換すると、急に問題の見通しが良くなります。ただし固有値と固有ベクトルの意味は、その見通しを得てから、物理的意味を考えるという順序が一般的と思えます。

 具体例を3つあげます。(4)は一般論です。

(1)直行行列
 xとyをベクトル,行列Aを直交行列,y=Axとします。この場合Aの固有値は1(一般には±1)、固有ベクトルはAが表す原点まわりの回転の回転軸となります。何故なら、#1さんの仰るように、固有ベクトルは変換Aで動かないベクトルなので、回転の場合動かないのは、その回転軸です。また原点まわりの回転では、原点からの距離も不変なので、回転軸の倍率も1となります。

(2)振動方程式
 振幅の余り大きくない振動の微分方程式は、x"=Axとな...続きを読む

Aベストアンサー

(*)式が間違っているように見えますが・・・。これではn=3のときにしか成立しません。
n=4のとき
P(C(1)∪C(2)∪C(3)∪C(4))
= P(C(1))+P(C(2))+P(C(3))+P(C(4))
-P(C(1)∩C(2))-P(C(1)∩C(3))-P(C(1)∩C(4))-P(C(2)∩C(3))-P(C(2)∩C(4))-P(C(3)∩C(4))
+P(C(1)∩C(2)∩C(3))+P(C(1)∩C(2)∩C(4))+P(C(1)∩C(3)∩C(4))+P(C(2)∩C(3)∩C(4))
-P(C(1)∩C(2)∩C(3)∩C(4))
というのは理解されていますか?

正しくは、
P(∪[i=1..n]C(i))
= Σ[i=1..n]P(C(i))-Σ[i1,i2=1..n, i1<i2]P(C(i1)∩C(i2))+Σ[i1,i2,i3=1..n, i1<i2<i3]P(C(i1)∩C(i2)∩C(i3))
-Σ[i1,i2,i3,i4=1..n, i1<i2<i3<i4]P(C(i1)∩C(i2)∩C(i3)∩C(i4))+…+(-1)^(n-1)P(∩[i=1..n]C(i))
となり、交互に符号が代わり共通部分を取る集合の数も1つずつ増えます。

証明の方針はあっていますよ。

(*)式が間違っているように見えますが・・・。これではn=3のときにしか成立しません。
n=4のとき
P(C(1)∪C(2)∪C(3)∪C(4))
= P(C(1))+P(C(2))+P(C(3))+P(C(4))
-P(C(1)∩C(2))-P(C(1)∩C(3))-P(C(1)∩C(4))-P(C(2)∩C(3))-P(C(2)∩C(4))-P(C(3)∩C(4))
+P(C(1)∩C(2)∩C(3))+P(C(1)∩C(2)∩C(4))+P(C(1)∩C(3)∩C(4))+P(C(2)∩C(3)∩C(4))
-P(C(1)∩C(2)∩C(3)∩C(4))
というのは理解されていますか?

正しくは、
P(∪[i=1..n]C(i))
= Σ[i=1..n]P(C(i))-Σ[i1,i2=1..n, i1<i2]P(C(i1)∩C(i2))+Σ[i1,i2,i3=1..n, i1<i2<i3]P...続きを読む


人気Q&Aランキング