ついに夏本番!さぁ、家族でキャンプに行くぞ! >>

とある解説に
「降伏比は、柱や梁のように応力勾配を持つ部材の場合、その塑性変形時の塑性化領域の広がりに支配的意味を持ち、
降伏比が高いほど塑性化領域が狭くなり、狭い範囲に大きなひずみが強要されることになる。」

と言うのがありまして
ここで使われている「応力勾配」と言うのは具体的に応力のどこの勾配のことを指しているのでしょうか?
単純に応力度歪度曲線の勾配のことでしょうか?
しかし、それだとヤング係数?になってしまい??です。
また、ここで言う「応力勾配を持つ部材」とは逆の
「応力勾配を持たない部材」と言うのはどんなものなのでしょうか?

A 回答 (2件)

1次元弾性論だけで考えれば、


σ=Eε=Edu/dx
応力勾配:dσ/dx=Edu^2/dx
という様に応力の1次微分(傾き)、または変位の2次微分と言う定義だと思います。簡単なのは応力の変化率という事かと。

>ここで使われている「応力勾配」と言うのは具体的に応力のどこの勾配のことを指しているのでしょうか?単純に応力度歪度曲線の勾配のことでしょうか?
応力度歪曲線とはなんですか?応力-歪曲線の事ですか?応力勾配とは応力の変化率です。切り欠きがある平板の引っ張りの場合、切り欠き周囲に応力集中が起こります。この部分は応力勾配が大(急)といえるでしょう。

また、ここで言う「応力勾配を持つ部材」とは逆の「応力勾配を持たない部材」と言うのはどんなものなのでしょうか?
単純引張りを受ける棒。

この回答への補足

ありがとうございます

>応力勾配とは応力の変化率

すみません微分は苦手でして(ーー;ゞ
自分なりにまとめてみますと
単純に応力図の傾きと言うことなのかな?
たとえば、使い方として
中立軸対称の応力図で弾性範囲内の三角形は
1、降伏点σyまでは応力勾配がどんどん大きくなる
2、降伏点σyを過ぎると三角形は台形へと変化するが
弾性部分の応力勾配はまだ大きくなる
3、全塑性状態になったとき応力勾配は0になる
と言う言い方は正しいでしょうか?

>>また、ここで言う「応力勾配を持つ部材」とは逆の「応力勾配を持たない部材」と言うのはどんなものなのでしょうか?
>単純引張りを受ける棒。

つまり応力勾配とは曲げ応力でのみ発生する勾配と言うことですか?
曲率の勾配?

補足日時:2009/05/26 15:53
    • good
    • 0

例えば柱に働く曲げ荷重を考えると中立軸の片側面で+σ0(引張り)、反対側の面で-σ0(圧縮)を生じ、+から-に及ぶ応力勾配を持つことになります。

したがって曲げ荷重を増やしていくと表面で降伏が始まり、降伏域は内部に広がっていくことになります。

この回答への補足

ありがとうございます。
つまり降伏荷重(台形に変る)までの三角形の勾配が応力勾配と言うことでしょうか?
その場合解説文にある
「降伏比は、柱や梁のように応力勾配を持つ部材の場合」
とありますがこれを逆に読むと
「応力勾配を持たない部材」もあると言うことになるかと思います。
もしこの三角形の勾配部分を応力勾配と言うのなら応力勾配を持たない部材と言うのはどう解釈すればいいのでしょうか?
単に荷重による曲げ応力が発生しない部材と言うことでしょうか?

補足日時:2009/05/25 12:59
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q相当応力、相当塑性ひずみについて

SHELL(板)要素の構造解析を行なっております。その解析結果の出力に主応力面についての応力、塑性ひずみがあります。その結果から相当応力、相当塑性ひずみを計算したいのですがよろしくお願いします。
また相当応力、相当塑性ひずみの工学的意味についてもあまりよく分かりませんので分かりやすくお願いいたします。

Aベストアンサー

大学出てからだいぶ時間が経ったので,とんちんかんなこと言ってるかもしれません.

式は,難しいのと,教科書に載ってると思われるので,
書きません.(書けません)

相当応力や相当ひずみというのは,破壊とか強度を論じる
ときに登場するものです.
材料試験をして,その材料がどの程度もつのか調べるわけです.
もしもあなたの注目している現象がその試験と全く同じ条件での材料の破壊や強度を求めたいのなら,その材料試験の値をそのまま適用できます.
しかし,材料はいろいろなかたちに加工され姿を変えて使用されます.荷重のかかりかたもいろいろです.そのため,いわゆる3軸の応力状態となります.6つの面に垂直応力やせん断応力がかかります.これらの応力状態で材料が持つのか持たないのかを議論するときに,その応力状態は,材料試験をしたときの単純な状態(たとえば一軸引っ張りやねじり試験)に換算したらどうなのかをみつけるときに相当応力というのが出てきます.

1軸応力だけなら,100kgf/mm^2もつとしても,
ねじりも同時にかかっていたり,他の2軸にも力がかかっていると単純に材料試験の結果を適用できないわけです.

相当応力は,破壊のメカニズムによりいろいろな式が提案されているので,逆に言えばどのような材料にも適用できる決定打はありません.

ここまで書いたことは,もしかして,違う相当・・・と勘違いしているかもしれません.
その際はご容赦を.

大学出てからだいぶ時間が経ったので,とんちんかんなこと言ってるかもしれません.

式は,難しいのと,教科書に載ってると思われるので,
書きません.(書けません)

相当応力や相当ひずみというのは,破壊とか強度を論じる
ときに登場するものです.
材料試験をして,その材料がどの程度もつのか調べるわけです.
もしもあなたの注目している現象がその試験と全く同じ条件での材料の破壊や強度を求めたいのなら,その材料試験の値をそのまま適用できます.
しかし,材料はいろいろなかたちに加工され...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q強度と剛性の違いは?

単純な質問ですが、強度と剛性って意味合いが違うのか知りたいです。
広辞苑で調べても言葉の意味の違いが分かりません。
同じようなことで、「・・・思う」と「・・・考える」も意味合いが違うんですか?

日本人ですが、日本語難しいです。

Aベストアンサー

No.6です。
>強度=「強さの度合い」、剛性=「外力によって変形しないという強度」ということですか・・・。

 その通りです。ただし、前に書いた通り、「強度」には「何に対して強いか」という点で種々の強度があります。
 一方、「剛性」はこれを高めるために関係する種々の「強度」の組合せで作り出すものといってもいいでしょうか。そして、剛性はただひとつだけのものといっていいでしょう。

>結局「強度」と「剛性」は同じなのですか?。ニュアンスの問題だけになるのですか。

 つまり、「強度」には実にいろいろな種類がありますが、「剛性」とは多くは構造体がこれに加わる外力によって変形しないように、「いろいろな種類の強度を組み合わせて作り出した総合的な強度」といったらいいかと思います。もちろんニュアンスの問題ではありません。
 
 「剛性」とは変形しない強さ.....これは例えば、自動車のボディなどといった構造体に剛性を持たせるには、路面の凹凸などから車輪を通じて伝わってくる振動や強い衝撃、風圧、遠心力や慣性、衝突時の衝撃といった「外力」によって車体がつぶれたり伸びたり、あるいはれじれたり歪んだりしないように(これが剛性)、圧縮強度、引張強度、ねじれ強度、など種々の「強度」をそれぞれ高める必要があります。

 また材料には弾性(バネの性質や弾力)というものがありますが、「外力」によって材料が一時的にバネやゴムボールのように変形することで、構造体全体が一時的に変形しないようにする必要もあります。

 繰り返しますと、こうした「種々の強度」をそれぞれ高めることで「剛性」は高まります。

 しかし、種々ある「強度」の中でも「磨耗強度」だとか「耐環境性」といった「強度」は直接「剛性」には関係ありませんね。ここのところをご理解下さると、ただのニュアンスの違いだけでないことがお分かりいただけると思います。

 とても技術的な話でさぞ難しいことと思いますが、わたしも技術分野の方はともかく、それをご説明する「国語」方が危なっかしいので、その辺はお許し下さい。

No.6です。
>強度=「強さの度合い」、剛性=「外力によって変形しないという強度」ということですか・・・。

 その通りです。ただし、前に書いた通り、「強度」には「何に対して強いか」という点で種々の強度があります。
 一方、「剛性」はこれを高めるために関係する種々の「強度」の組合せで作り出すものといってもいいでしょうか。そして、剛性はただひとつだけのものといっていいでしょう。

>結局「強度」と「剛性」は同じなのですか?。ニュアンスの問題だけになるのですか。

 つまり...続きを読む

Q樹脂材料の曲げ弾性率について

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとしたのですが、
材料のヤング率(縦弾性係数)を知らないことに
気づきました。
同僚に聞いてみたところ、「曲げ弾性率」というのは
材料の仕様書に載っていると教えてくれました。
職場にある材料便覧を見ても「曲げ弾性率」は
載っていました。
この「曲げ弾性率」はヤング率(縦弾性係数)と
同じなのでしょうか。それとも違うのでしょうか。
もし違う場合、ヤング率(縦弾性係数)は
どのようにして調べるべきなのでしょうか。
似たような経験がある方がいましたら
お手数ですがご教示願います。

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとし...続きを読む

Aベストアンサー

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりますが,曲げのかかる部材には,引張・圧縮応力の他に,せん断応力もかかっています.これらの効果が総合的に寄与してくるため,引張弾性率と曲げ弾性率は,「意味合いとしては」異なる物性値です.

しかし,ごく一般的なプラスチックであれば,引張弾性率と曲げ弾性率はほぼ同じ値になります.
下記などにデータが出ていますが,恐らくほぼ同等か,曲げ弾性率の方が10%程度低い値になっていると思います.
http://www.m-ep.co.jp/mep-j/tech/index.htm
http://www.mrc.co.jp/acrypet/04tech_01.html

カタログデータに曲げ試験が多い理由は,試験が簡単だからです.薄い平板の試験片が使えますからね(チューイングガムのような形状です).それに対し,引張試験では,試験片を「つかむ部分」の加工が難しく,やや複雑な形状になってしまいます.

というわけで,プラスチックの分野では,曲げ弾性率を測定して,これをEとして代用するケースが多いと思います.

ただし,圧縮やせん断弾性率が引張と極端に違う材料・・・たとえば,ガラス繊維で一方向強化したような異方性材料では,曲げ弾性率とヤング率は大きく異なります.

あと,蛇足になりますが・・・
曲げ弾性率=曲げ応力/曲げひずみ
とありますけど,前述の通り,曲げ応力や曲げひずみは一定値ではありませんので注意が必要ですね.材料内部で分布をもっています(ここが引張と違うところ).

通常は,曲げスパンL,破断荷重P,試験片幅b,厚さh,たわみxなどを用いて,
E=(P・L^3)/(4・b・h^3・x)
のような式で求めます.試験方法によっても式が違ってきますので,材料力学の教科書をお読み下さい.

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりま...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qミーゼス相当ひずみについて

ミーゼス相当ひずみの概念が理解できません。ミーゼス相当応力はイメージできますし理解しているつもりです。手元にある材料力学の教科書で調べたところ「ミーゼスの降伏条件」や「ひずみ」については詳しく解説されているのですが、ミーゼス相当ひずみについては解説されていません。やはり有限要素法関連の教科書・専門書で調べないといけないでしょうか?ネット上でも納得できる解説はぜんぜん落ちていません。よろしくお願いいたします。

Aベストアンサー

固体中の応力、ひずみは基本的にテンソルの形で表現されます。一方で実際に引張り試験で測定された応力ひずみ曲線はスカラー量です。相当応力、相当ひずみとはテンソルからスカラー量への変換のために定義されたツールであると理解しています。物理的な意味はないように思われます。浅学者なので誤解があるかもしれません。

Q断面2次モーメントと断面係数の違い

断面2次モーメントと断面係数の違いなんですが

断面2次モーメントとは、部材の変形のしにくさを表して、断面2次モーメントが大きいと、たわみにくく座屈しにくいことを示す。
それに対して断面係数は、部材の曲げ強さを表し、断面係数が大きいと曲げに対して強いことを示す。

なんですが、思うにたわみにくさと曲げ強さはイコールではないのですか?

断面2次モーメントが大きいと曲げに対しても強い。
断面係数が大きくてもたわみににくい。

とはかならずしもならないのでしょうか?
いまいち区別してる意味がよくわかりません
ご教授くださいませんか

Aベストアンサー

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超えた時に破壊する。

この時,(A)部分の負担する力(T)が同じならば,(A)の面積(=)が大きい程破壊しにくい。又,中心点からの距離(J)が大きいと破壊しにくい。簡単に言ってしまえば,この時の(A)の面積と距離(J)を掛けたものが,曲げ外力に抵抗する抵抗曲げ強度を決めるための係数,即ち,断面係数(Z)です。

つまり,曲げ強度に影響を与える断面係数は,材料の材質,強度,変形などに関係なく,形状と距離だけで決まります。

一方,(A)部分に作用した引張力(T)は,(A)部分を伸ばす,即ち,変形させます。この時の変形量は,フックの法則によって,形状,距離に加えてヤング係数によって決まります。
この時,変形量は断面の外縁が最も大きく,中心位置に近いほど小さくなります。この時の形状の変化率を表すのが断面2次モーメントです。
(A)部分が引張によって伸び,(B)部分が圧縮による縮んだ結果,この材料はδ方向に変形します。この変形量がたわみです。

つまり,断面係数と断面2次モーメントは,公式は似ていますが,断面係数は曲げ抵抗強度に関する量であり,断面2次モーメントは変形率に関する量であって,お互いに全く関連性のない形状に関する係数です。

// たわむ=まがる
は,変形に関するもので,強度とは関係有りませんので,断面2次モーメントにだけ関係する語句です。(たくさん曲がっても=たわみが大きくても,破壊するとは限らない。)

これを踏まえて,

// たとえば
// I>Zの場合だと割り箸のようにたわみにくいけど折れやすく
// I<Zの場合だと釣竿のようにたわみやすいけど折れにくい
// とかだとイメージできるんですが

というのは,上記の断面係数と断面2次モーメントの理屈から言うと,正解とは言えませんが,結果的に,強度とたわみの関係を言い表している,とっても素敵な例として有効だと思います。(今後,私にも使わせてください。)

この例の(I)を,曲げ剛性(EI)と言い換えれば,強度と変形の関係を表す例として完璧かもしれません。つまり,変形=たわみの話をする時,(I)が単独で使われることはなく,常に一組の概念として,曲げ剛性(K=EI)として使われる,と言うことです。

これらの断面に関する諸量は,構造力学や材料力学において,数学的に積分を用いて説明され,イメージとして説明されることはほとんど有りません。ですから,実際に計算する事は出来ても,どのようなイメージかと聞かれると答えに窮して仕舞うのも仕方ない事だと思います。私もその一人ですが・・・

どちらにしても,断面係数と断面2次モーメントの関連性について,1級建築士でもイメージする事が難しい概念ですから,イメージ化して素人に説明するのは,多少無理があると思います。

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超え...続きを読む

Q静的・動的の意味

よく静的解析、動的解析という言葉を耳にするのですが
いまいちイメージがつかめません。

そもそも力学的に「静的」、「動的」とはどういう意味を持つのでしょうか。

よろしくお願いします。

Aベストアンサー

検索エンジンで調べてみますと、「動的解析」や「静的解析」という用語は、それが使われる分野によって意味が違っています。ソフトウェアの分野では、ソフトウェアを動作させずに調べることを静的解析、動作させて調べることを動的解析と言うようです。また、建築の分野では、建築物の風力や重量などに対する耐性を調べることを静的解析、地震のときの揺れなどに対する耐性を調べることを動的解析と言うようです。

力学は、静力学と動力学に分けることができます。静力学では、”力の釣り合い”を、動力学では、”運動”を扱います。

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Q疲労強度と疲労限界の違いについて

調べたところ、疲労強度は「材料に繰り返し応力を加えた場合に、応力を無限回数負荷しても破壊しない応力振幅の上限のこと」と定義され、疲労限界は疲労限度で調べると「材料の疲労において、物体が振幅一定の繰返し応力を受けるとき、何回負荷を繰り返しても疲労破壊に至らない、またはそのように見なされる応力値のこと」と定義されており、どうもこの違いが分かりません。
疲労強度と疲労限界について違いを教えてもらえると幸いです。

Aベストアンサー

同じ意味です。
例えば、金属の薄い板でも針金でも良いのですが、同じ個所を曲げたり延ばしたりすると、細かなヒビが入り最後は破断に至ります。これが金属疲労。

飛行機の機体、新幹線の車体。飛行機は与圧で機体が膨らんだり縮んだり、新幹線もトンネルに入ると強い圧力を受ける。
車等の板ばねも然り
で、簡単に金属疲労で破壊されると大事故に至る。そうならぬように疲労強度に余裕を持たせて設計する。疲労限界は、設計上想定し得る値。
また、事故を未然に防止する為、飛行機や新幹線車両は定期的に超音波探傷機で検査する。
鉄道の車軸も然り。


人気Q&Aランキング