可算集合の証明の問題です。

(1)数え方の規則:N→N*Z を与えなさい。
(2)13番目の要素は?(1,1,1)(-2,1,4)は何番目の要素?

N^2のときとは違って困ってます。よろしくお願いします。

A 回答 (2件)

(N,Z) = (1,0), (2,1), (3,-1), (4,2), (5,-2), (6,3), (7,-3), …


なら、Z = [N/2] ・ (-1)^N でしょう。ただし、[ ] はガウスの記号です。
式で表すことに何か意味があるのかは、大いに疑問ですが。

意図を伝えるだけなら、0, 1, -1, 2, -2, 3, -3, … でも十分だし、
「…」による例示を避けるために、コレを文章で説明してもよいでしょう。
いずれにせよ、数式が大切なのではありません。


(2) については~

> (1) の答えは、一通りではなく、
> (2) の答えは、(1) によって変わります。

N→N×N の方は、どうやったのでしょうか?

この回答への補足

N={0,1,2,…}
N→N*N は(i,j)は第(i+j)斜線上のi番目(j行目)
つまり、第i+j車線までの斜線の長さの和+iを求める。

(i+j)(i+j+1)/2 + i の規則でわかるらしいです。

補足日時:2009/05/30 18:16
    • good
    • 0

N^2 のときと、違いません。


まず、Zの附番 N→Z を考える。
やり方は、一通りではありませんが、
例えば、0, 1, -1, 2, -2, 3, -3, …
などがあるでしょう。
次に、これを使って、
N→N×N→N×Z を考えればよい。

(1) の答えは、一通りではなく、
(2) の答えは、(1) によって変わります。

この回答への補足

回答ありがとうございます。

(N,Z)=(1,0)(2,1)(3,-1)(4,2)(5,-2)(6,3)(7,-3)...のようにすると、一般に(m,n)が何番目という式が立てられなくて困ってます。

あと、(2)問題間違えました。(3,-1)(2,10)、50番目の要素です。

補足日時:2009/05/27 14:21
    • good
    • 0
この回答へのお礼

おそらく理解できました。
ありがとうございました。

お礼日時:2009/06/02 21:30

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QOracle7データベースの入っているフォルダを圧縮した際の問題について

Windows NT4.0 SP3(Server)にてOracle7のデータベースの入っているフォルダを圧縮(フォルダのプロパティよりフォルダごと圧縮するにチェック)した場合にデータベースが壊れてアクセスできなくなることはありますか。

(Windowsの圧縮機能はファイルを壊すことがあると聞いたので不安になってます。)

データベースにアクセスする時間が掛かる(レスポンスが悪くなる)ことは、承知の上です。

Aベストアンサー

オラクルデータベースのファイルをフォルダ圧縮するのは問題ありません。

ですが、Windowsのバグで圧縮フォルダを壊すことがあるのであれば、
当然データベースファイルも壊れることになりますし、救済の方法は
ありません。

>(Windowsの圧縮機能はファイルを壊すことがあると聞いたので不安になってます。)

NT4.0で実体験として壊れたことはないのですが、古いNT3.5とかでは
壊れたとの話がありました。(15年くらい前のNT3.5や3.5.1の初期の話です)

Qx^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2

x^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2+・・・+y^n-1)
となるのはなぜですか?
教えてください。

Aベストアンサー

1+r+r^2+・・・+r^(n-1)=(1-r^n)/(1-r)

r=x/yとおくと

1+(x/y)+(x/y)^2+・・・+(x/y)^(n-1)={1-(x/y)^n}/{1-(x/y)}
故に、
{1-(x/y)^n}={1-(x/y)}{1+(x/y)+(x/y)^2+・・・+(x/y)^(n-1)}

両辺にy^nを乗じて
x^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2+・・・+y^n-1)

Q一つのMySQLデータベースで、複数のwebアプリを使用していますが問題ないですか?

Wordpress
xoops
RSSリーダ
ブックマーク
他にもいくつかのwebアプリで一つのMySQLデータベースを使用しています。
さくらインターネットというレンタルサーバで、スタンダートプランです。
一日のアクセスは3000~4000くらいです(会社のなので)

このような使い方は問題ないのでしょうか?
データベースが一つなので、テーブルが非常に膨れあがっています。
問題があるようなら複数のMySQLが使えるレンタルサーバにしたいのですが、どうでしょうか?
問題があるようなら、どこのレンタルサーバがいいかも教えていただけると嬉しいです。

Aベストアンサー

> 私はアプリごとに同時にアクセスがあった時に大丈夫かなぁと
複数のアプリケーションから同一のテーブルにアクセスがある時、
排他制御やトランザクション、業務ロジック側の制御がしっかりしてないと
問題ありですよ。
アクセス自体と、1つのデータベースに複数アプリケーションで利用するテーブルが
存在することは何ら問題ありません。

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Q学校でSQLについて学んでいます。とあるデータベースに関する問題なので

学校でSQLについて学んでいます。とあるデータベースに関する問題なのですが

2 データベース又はデーターウェアハウスに蓄えられているデータを
分析する手法としてどのようなものがありますか?
知っているものを一つあげ、実例を挙げて説明してください

蓄えられているデータを分析する手法というのが、皆目検討がつきません・・・>_<
普通にコンピュータを使う、ということじゃないですよね?

済みませんが、何方か宜しくお願い致します

Aベストアンサー

 とりあえず、
 http://www-06.ibm.com/systems/jp/i/seminar/dwhouse/dwhouse8.shtml
 このあたりを読んでください。
 必要十分なだけのことが書いてありますから=^・。・^=

 ちなみに、http://www.google.co.jp で、「データウェアハウス 分析手法」と入れて検索しただけ。まぁ、トップにこんなわかりやすい文書が出てくるのも珍しいですが(苦笑)。

 蛇足ですけど、調べる方法を探して調べるのも学習のうちですよ。というか、回答内容より本当はそっちの方が大事だと思うんですけどね。(もう一つ付け加えると、質問サイトで質問するというのは学習する時の調べ方としては、あまりよろしい方法ではありません。先生に答えを聞いているのと同じレベルですから。)

Qa_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,

a_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,)のときの lim(n→∞)a_n をもとめよ。
途中し式も詳しく教えてください

Aベストアンサー

a_1=1
a_n≧1とすると
(a_{n+1})^2=a_n+1≧2
a_{n+1}≧√2>1

x^2=1+x
x=(1+√5)/2>1
a_{n+1}+x>2
(a_{n+1})^2-x^2=a_n-x
(a_{n+1}-x)(a_{n+1}+x)=a_n-x
|a_{n+1}-x|=|a_n-x|/(a_{n+1}+x)<|a_n-x|/2

|a_2-x|<|a_1-x|/2=(√5-1)/2

|a_{k+1}-x|<(√5-1)/(2^k)とすると
|a_{k+2}-x|<|a_{k+1}-x|/2<(√5-1)/(2^{k+1})

|a_{n+1}-x|<|a_1-x|/(2^n)

ε>0に対して (√5-1)/ε<n0 となる n0があり
n>n0 ならば |a_{n+1}-(1+√5)/2|<(√5-1)/(2^n)<(√5-1)/n0<ε
lim_{n→∞}a_n=(1+√5)/2

Qデータベースの問題集などでデータ例として実際の書籍データを使っていいか

データベースのテキストを作ろうと思っています。
データベースは、沢山のデータを格納して検索したりするものですから、
例題にはそれなりの分量の系統立ったデータが必要となります。
そこで、実際の書籍の題名、著者、出版社、出版年などの
書誌情報をデータ例にして例題を組みたいと思っています。
そのとき、それらの固有名詞が印刷教材に載るのですが、
著作権の面が心配になってきました。
つまり、テキストに例として使っていいか
すべての著者に問い合わせることはちょっと大変なので、
できればやらないで済ましたいのですが大丈夫でしょうか。
皆さんのアドバイスいただければと思います。

Aベストアンサー

題名、著者名、出版社、出版年などのデータには著作権はありませんから、著作権の問題となることはありません。
ただ、何かのデータベースの一部をまとめて使うということであれば、使い方によってはデータベース製作者の著作権に触れるおそれがあります。

Q数学についてです。 自然数全体の集合を S、その部分集合をU={3m+7n|m,nはSの要素}とお

数学についてです。

自然数全体の集合を S、その部分集合をU={3m+7n|m,nはSの要素}とおく。
このとき、U はある整数 k 以上のすべての整数を含むことを示せ。また、そのような k の最小値を求めよ。

このときmとnは自然数ですよね
だから mとnは1以上であるから
3m+7n 代入して 10になるから kの最小値は10ではないのですか?
わかる方がいれば詳しく教えてもらえるとありがたいです。
回答よろしくお願いしますm(_ _)m

Aベストアンサー

答えは22です。

n=1とすれば、
 3m+7=3(m+2)+1となり、10以上で、3で割った余りが1であると数は含まれることがわかる。

同様に、
n=2とすれば、17以上で3で割った余りが2である数は含まれ、
n=3とすれば、24以上で3で割った余りが0である数は含まれることがわかる。

したがって、22以上の全ての自然数は含まれることがわかる。
この22が最小であることを示すには21になるようなm,nが存在しないことをいえばよい。

Q初級シスアドH19 春午後問題問い6 データベース

初級シスアドH19 春午後問題問い6 設問2 データベース

あるときは正解、あるときはぜんぜん間違うという感じでDFD図が
しっかり飲み込めてないなと痛感しています。
例えばl(エル)を店舗(オ)と回答してしまいました。
答えは貸し出し(エ)なのですが、ああそうかとも思いますが、
何故店舗ではないのかぜんぜん分かりません。
どなたか解説していただけないでしょうか?

Aベストアンサー

No.1です。

> というような感じで、考えたら、いいのでしょうか
> なんか分かってきたような気がします。
100%完璧です。免許皆伝の域ですね。
あとはどんどん問題を解いて自信をつけてください。
表名が全てきちんと当たっていたので実はびっくりしてしまいました。
実はこの追加回答で表名を解説付きで全部記載したほうがいいかなと思い始めていた矢先でしたから。

余談ですが、ER図では情報の流れは表現していません。
Rはリレーション:関係ですから親子関係とかいう感じですね。
実はER図には色んな描き方があって矢印を全く使わないのも有ります。
矢印が情報の流れを表さないと言うのはこれによっても明白です。

がんばってください。

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.


人気Q&Aランキング

おすすめ情報