【先着1,000名様!】1,000円分をプレゼント!

梁のたわみが大きいとき、微小変形を前提とするたわみの式は成り立たないのでしょうか??

このQ&Aに関連する最新のQ&A

A 回答 (5件)

>梁のたわみが大きい


これは、長さ200mmの片持梁なら数センチたわんだことを言います。
よって、長さ200mmの片持梁が3ミリたわんだくらいなら、普通のたわみ式で問題ありません。
というのは、「微小変形の前提」とは、たわむ方向と直角方向に変形するか否かを指すため。
長さ200mmの梁が仮に2センチたわんだとして、軸方向の変化は1ミリくらいであり、
1ミリ長さが変わってもモーメントの大きさには影響しないので微小変形の前提が成立しています。

なお、鋼材の場合。
弾性領域から出ても、そう気にする必要はないでしょう。
(力をはずせばほとんど元に戻るし、弾性状態からちょっと外れるだけ。)
ただ、降伏点を越えてしまうと、曲がった後元にもどらないので要注意です。
※通常、これは破壊したとみなされる。

あと、
「微小変形を前提とするたわみの式」とは、変形前の梁からモーメントを求めてさしつかえない場合に使う式のこと。
「微小変形を前提が成立しない場合のたわみの式」とは、
変形後の梁の長さからモーメントを求めなおす必要があること。
塑性変形するかしないかを指すわけではありません。
※普通のたわみ式は、塑性変形も前提としていないから塑性変形の場合には使えません。
 でも、「微小変形の前提が成立しないから使えない」という理由ではありません。
    • good
    • 0
この回答へのお礼

ありがとうございます!
どのくらいまでは微小変形とみなせるかに悩んでいたので、とても参考になりました!

ちなみに実験では幅9.9ミリメートル、厚さ0.5ミリメートルの平板を使いましたが、実験後もとの形に戻っていたので、おそらく弾性変形だと思われます!

お礼日時:2009/06/04 23:21

補足です。


δ=PL^3/3EI=ML^2/3EI
δ;先端変形量、I;断面二次モーメント、E;ヤング率
変形してM=3EIδ/L^2
曲げ応力の式へ代入
σ=My/I=(3EIδ/L^2)y/I=Cy
y;中立面からの距離。通常最大応力は梁上下面なので梁高さの半分。
δ、E、L一定なのでまとめてC
以上から根元の最大応力は中立面から梁表面までの距離yに比例。梁が縦に長い場合は高い応力が発生し、それが塑性域に入れば塑性変形。なので断面形状次第かと。
    • good
    • 0

>ひょっとすると弾性域を超えてしまっているような気がするのですが、弾性域を超えた場合の式というものも存在するのでしょうか??


断二次モーメントIが分からないので何ともいえませんが、Eを求めたのであれば根元の最大応力が計算できる筈です。鋼材であれば、弾性限度は大体同じですのでそれ以下であるか確認して下さい。

超えている場合は、ヤング率Eが塑性域に入り変わります。(通常少し緩やかになります。)全歪ε=εe(弾性)+εp(塑性)となりその積分が変形量になりますので、弾塑性力学が必要になります。

ただ、実験レベルであればその都度塑性変形はさせないと思うので、多分弾性域内ではないでしょうか?上下面を逆に固定しるとか、床の上においてみて、塑性変形していなければ多分弾性域内でしょう。
    • good
    • 0

鋼の場合、歪がだいたい2/1000を超えると弾性領域から出て塑性領域となります。



梁が釣竿のように長くて軽量であれば、単位長さの微小歪の累積が大変形となるので弾性論で対応できます。けど大体梁は思いし、程度が分かりませんが上記の値を超えるようであれば弾塑性論の範疇です。
    • good
    • 0
この回答へのお礼

回答ありがとうございます!

私が行った実験では150mmの片持ち梁の先端部が自重によって0.7mm、200mmの片持ち梁が自重によって3mmたわみました。
(逆算してヤング率を求めるという実験なので、梁がなんであるかは不明です。)
 
ひょっとすると弾性域を超えてしまっているような気がするのですが、弾性域を超えた場合の式というものも存在するのでしょうか??

お礼日時:2009/06/04 16:25

こんばんは



専門家ではないのですがアドバイスできることがあるので回答します。

>微小変形を前提とするたわみの式
式の出し方によります。
微少変形を前提とした場合「○○を無視する」ということが出てきます。
変形が大きくなると無視できない項目である場合もありえます。

参考資料をいろいろと探して、その式がどういう計算で出てきたのかを調べてみてください。

>梁のたわみ
おそらく、建築物の強度に関する問題かと思います。
建築物の強度が足りなければ人が死ぬような事故が起こりえます。
大変な仕事だと思いますが、がんばってください。
p(^^)q
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q曲げ試験について

 曲げ試験のひずみ―荷重、たわみ―荷重の測定値と理論値では必ず一致しないと言うのですが、それは誤差によるものではないとしたら他に何が考えられるでしょうか?教えてください。

Aベストアンサー

chaborinさんのご質問の「理論値」の理論がどの範囲まで考えているか、によってお答えは変わってくると思います。(非弾性挙動や材料の履歴まで含めて精密に材料をモデル化すれば、理論値と測定値のずれは限り無く小さくなるのですから)

ここではchaborinさんの「理論値」が、
(1)試料の変形は、1次元の単純なはり(梁)の曲げで表される
(2)試料を構成する材料は線形(弾性)材料
なる仮定に基づいて、2点で支持して中央に荷重を与えた場合のたわみを計算した数値のことに解釈するとします。

まず(1)ですがそのたわみ量の計算においては通常
(a)断面の形状・寸法は変形によっても変化しない
(b)各断面は変形しても、傾かない
という仮定をおいて解きます。変形量が微小の場合はよいのですが、(a)(b)ともその妥当性が怪しくなってくることはお分かりかと思います。試料の上面は圧縮されるので少し太り、下面は引っ張られて痩せます。
(b)は言葉で読むと分かりにくいかも知れませんが、次のようなことです。
最初に下のように試料の側面に、鉛直な線を引いておきます。荷重をかけない状態では総ての線は平行です。

   荷重
   ↓
□□□□□□□
 ○   ○

これに荷重をかけると全体がしなり、側面に描いた線もすこし斜めに傾きます(試料の左側では右上がり、試料の右側では左上がり)。しかし一番簡単な近似ではこれを無視して解析します。(詳しくは材料力学の教科書の「はりの曲げ」辺りを読んでみて下さい)

さらに上記の解析では必ず「ヤング率」という数字を使うと思います。ご存じかと思いますがヤング率は材料によって決まる数値で、ひずみと応力の間の比例係数です。
この比例の様子を図に表すと下のようになります。

応力

│   *
│  *
│ *
│*
└─────→ひずみ

このようにひずみと応力が完全に比例する材料を「線形材料」や「(完全)弾性材料」などと呼びます。
しかし現実のの材料はひずみ-応力の関係がどこまでも比例するわけではありません。例えば下のように、ひずみが大きくなると応力とひずみが比例しなくなるのが一般的です。


応力

│      *
│   *
│ *
│*
└─────→ひずみ

このような挙動を「非線形挙動」「非弾性挙動」などと呼びます。こうなるともはや、ヤング率を定数と見なせなくなります。従って最初の仮定の(2)も怪しくなってきます。

まとめますと、単純なはり(梁)の曲げで求めた荷重-たわみの理論値は、現実の材料と
(1)はりの断面形状・寸法の変化を無視している
(2)解析の際に、はりの断面の変形に伴う傾きを無視している
(3)解析では材料を線形としているが、実際の材料は非線形の挙動を示す
という点で差異があり、その分が誤差になるということです。

chaborinさんのご質問の「理論値」の理論がどの範囲まで考えているか、によってお答えは変わってくると思います。(非弾性挙動や材料の履歴まで含めて精密に材料をモデル化すれば、理論値と測定値のずれは限り無く小さくなるのですから)

ここではchaborinさんの「理論値」が、
(1)試料の変形は、1次元の単純なはり(梁)の曲げで表される
(2)試料を構成する材料は線形(弾性)材料
なる仮定に基づいて、2点で支持して中央に荷重を与えた場合のたわみを計算した数値のことに解釈するとします。

まず(1)ですがそ...続きを読む

Q断面形状が変化する梁の撓み量

片持ち梁で撓み量を求める場合 梁の断面形状が一様な場合はよいのですが断面形状(断面二次モ-メント)が梁の長さ方向の関数で変化するような場合 撓み量を求める方法を教えていただきたいのですが 宜しくおねがいします。

Aベストアンサー

梁の断面形状が長手方向(z方向)で変化する場合は、断面二次モーメントを、固定端からの距離 z の関数 I(z) として、それを梁の形状 y(y) に関する微分方程式に代入した
  d^2y/dz^2 = M(z)/{ E*I(z) } --- (1)
を y(z) について解けばいいだけです。 M(z) は曲げモーメント、E はヤング率です。ヤング率も z 方向で変わるとき(梁の材料が途中で変わるときなど)は、 E も z の関数 E(z) とします。

y方向に荷重をかけたときの断面二次モーメントは、dA を断面内の微小面積として
  I(z) = ∫y^2 dA
で定義されますが、断面が矩形(長方形)や円などのように単純な形状のときは以下のようになります。

(断面形状が矩形の場合)
断面積が位置 z によって変わり、幅が w(z)、高さが h(z) で表わされるとき
   dA = dx dy
   積分範囲は、x 方向が矩形の幅の範囲、y 方向が矩形の高さの範囲
として
  I(z) = ∫[ x = -w(z)/2 ~ w(z)/2 ] dx∫[ y = -h(z)/2 ~ h(z)/2 ] y^2 dy = { w(z)*h(z)^3 }/12
となります。梁が長さ L の四角錐なら、w(z) = w0*( L - z )/L、h(z) = h0*( L - z )/L です( w0 と h0 は底面の幅と高さ)。

(断面形状が円の場合)
断面積が位置 z によって変わり、断面の半径が r(z) で表わされるとき
   dA = r dr dθ
   y = r*sinθ
より
   y^2 dA = r^3 (sinθ)^2 dr dθ = r^3*{ 1 - cos(2θ) }/2 dr dθ
したがって
   I(z) = ∫[ r = 0 ~ r(z) ] dr∫[ θ = 0 ~ 2*π ] r^3*{ 1 - cos(2θ) }/2 dθ
    = π*{ r(z)^4 }/4
となります。梁が長さ L の円錐なら、r(z) = r0*( L - z )/L です(r0 は底面の半径)。

富山高専ではここ(http://www.toyama-nct.ac.jp/gakusei/syllabus/16/syllabus/kikai/3/zairiki1m.pdf)の第32週のところの右側に書いてあるように、上の方法で解かないと×になると思いますが、smzsさんの場合はどうなのでしょうか。集中荷重や分布荷重のとき M(z) がどういう形になるかとか、式(1)を解いた後、たわみを計算する方法は分かりますね?

梁の断面形状が長手方向(z方向)で変化する場合は、断面二次モーメントを、固定端からの距離 z の関数 I(z) として、それを梁の形状 y(y) に関する微分方程式に代入した
  d^2y/dz^2 = M(z)/{ E*I(z) } --- (1)
を y(z) について解けばいいだけです。 M(z) は曲げモーメント、E はヤング率です。ヤング率も z 方向で変わるとき(梁の材料が途中で変わるときなど)は、 E も z の関数 E(z) とします。

y方向に荷重をかけたときの断面二次モーメントは、dA を断面内の微小面積として
  I(z) = ∫y^2 dA
で定...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q樹脂材料の曲げ弾性率について

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとしたのですが、
材料のヤング率(縦弾性係数)を知らないことに
気づきました。
同僚に聞いてみたところ、「曲げ弾性率」というのは
材料の仕様書に載っていると教えてくれました。
職場にある材料便覧を見ても「曲げ弾性率」は
載っていました。
この「曲げ弾性率」はヤング率(縦弾性係数)と
同じなのでしょうか。それとも違うのでしょうか。
もし違う場合、ヤング率(縦弾性係数)は
どのようにして調べるべきなのでしょうか。
似たような経験がある方がいましたら
お手数ですがご教示願います。

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとし...続きを読む

Aベストアンサー

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりますが,曲げのかかる部材には,引張・圧縮応力の他に,せん断応力もかかっています.これらの効果が総合的に寄与してくるため,引張弾性率と曲げ弾性率は,「意味合いとしては」異なる物性値です.

しかし,ごく一般的なプラスチックであれば,引張弾性率と曲げ弾性率はほぼ同じ値になります.
下記などにデータが出ていますが,恐らくほぼ同等か,曲げ弾性率の方が10%程度低い値になっていると思います.
http://www.m-ep.co.jp/mep-j/tech/index.htm
http://www.mrc.co.jp/acrypet/04tech_01.html

カタログデータに曲げ試験が多い理由は,試験が簡単だからです.薄い平板の試験片が使えますからね(チューイングガムのような形状です).それに対し,引張試験では,試験片を「つかむ部分」の加工が難しく,やや複雑な形状になってしまいます.

というわけで,プラスチックの分野では,曲げ弾性率を測定して,これをEとして代用するケースが多いと思います.

ただし,圧縮やせん断弾性率が引張と極端に違う材料・・・たとえば,ガラス繊維で一方向強化したような異方性材料では,曲げ弾性率とヤング率は大きく異なります.

あと,蛇足になりますが・・・
曲げ弾性率=曲げ応力/曲げひずみ
とありますけど,前述の通り,曲げ応力や曲げひずみは一定値ではありませんので注意が必要ですね.材料内部で分布をもっています(ここが引張と違うところ).

通常は,曲げスパンL,破断荷重P,試験片幅b,厚さh,たわみxなどを用いて,
E=(P・L^3)/(4・b・h^3・x)
のような式で求めます.試験方法によっても式が違ってきますので,材料力学の教科書をお読み下さい.

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりま...続きを読む

Q材料力学のフックの法則にて

σ=Eε・・・(1)
σ:応力 E:ヤング率 ε:ひずみ
(1)式を導出するときに使う
P=Eδ・・・(2)
P:荷重 E:ヤング率 δ:伸び
この(2)式の意味がわかりません。
単位計算が合っていないような気がして・・・
誰か教えてください。

Aベストアンサー

(2)式をバネばかりの時などに使う式
 F=Kx      F:力(N)、K:バネ剛性(N/m)、x:伸び量(m)
と勘違いされていませんか?

(1)式の単位は、応力(N/m^2),ヤング係数(N/m^2),ひずみ(無次元量)で、(2)式の単位は荷重(N),伸び(m)で先に紹介した式と同じになります。
伸びにかかる係数は、ヤング係数でなく、剛性ではないでしょうか?

S ティモシェンコ、D H ヤング著 「材料力学要論」 (前澤成一訳) コロナ社
によると、
 P=AEδ/L
です。
 ここでAは断面積(m^2),Lは長さ(m)です。
これだと両辺とも単位は力の単位(N)になります。

σ=P/A
ε=δ/L
ですから、この式から(1)式は導出できます。

もう一度、(2)式を確認してみてください。

Q普通自動車の運転免許の正式名称

を教えてください。
履歴書になんてかけばいいかわかりません。

普通自動車第一種免許や第一種普通運転免許とかいわれていますが。

警察などの公式な場所に問い合わせてみた人がいましたら教えてください。

Aベストアンサー

抜粋です.「普通自動車免許」ですね.
「第一種運転免許」はありますが,「普通自動車第一種免許」や「第一種普通運転免許」とは言わないようです.第二種の場合は名称に入り,「普通自動車第二種免許」のように言うようです.

--------------------
道路交通法
第六章 自動車及び原動機付自転車の運転免許
第八十四条  自動車及び原動機付自転車(以下「自動車等」という。)を運転しようとする者は、公安委員会の運転免許(以下「免許」という。)を受けなければならない。
2  免許は、第一種運転免許(以下「第一種免許」という。)、第二種運転免許(以下「第二種免許」という。)及び仮運転免許(以下「仮免許」という。)に区分する。
3  第一種免許を分けて、大型自動車免許(以下「大型免許」という。)、普通自動車免許(以下「普通免許」という。)、大型特殊自動車免許(以下「大型特殊免許」という。)、大型自動二輪車免許(以下「大型二輪免許」という。)、普通自動二輪車免許(以下「普通二輪免許」という。)、小型特殊自動車免許(以下「小型特殊免許」という。)、原動機付自転車免許(以下「原付免許」という。)及び牽引免許の八種類とする。
4  第二種免許を分けて、大型自動車第二種免許(以下「大型第二種免許」という。)、普通自動車第二種免許(以下「普通第二種免許」という。)、大型特殊自動車第二種免許(以下「大型特殊第二種免許」という。)及び牽引第二種免許の四種類とする

参考URL:http://law.e-gov.go.jp/cgi-bin/idxselect.cgi?IDX_OPT=2&H_NAME=&H_NAME_YOMI=%82%c6&H_NO_GENGO=H&H_NO_YEAR=&H_NO_TYPE=2&H_

抜粋です.「普通自動車免許」ですね.
「第一種運転免許」はありますが,「普通自動車第一種免許」や「第一種普通運転免許」とは言わないようです.第二種の場合は名称に入り,「普通自動車第二種免許」のように言うようです.

--------------------
道路交通法
第六章 自動車及び原動機付自転車の運転免許
第八十四条  自動車及び原動機付自転車(以下「自動車等」という。)を運転しようとする者は、公安委員会の運転免許(以下「免許」という。)を受けなければならない。
2  免許は、第一種運...続きを読む

QFFT・PSDの縦軸は何を意味するのでしょう?

加速度計測の結果について、PSD(パワースペクトラムデンシティ)をかけた場合、その縦軸の意味を教えてください。
また、FFTとPSDはどういう違いが有るのでしょうか?
これまでは、周波数の分布のみに着目していました。
どなたか、わかりやすく教えてください。
よろしくお願いします。

Aベストアンサー

一般に加速度センサー信号の出力は電圧です。

縦軸は係数をかけていない状態では#1さんがおっしゃるように計測した電圧の値を示しています。

よって、縦軸に物理的な意味を持たせるのには、電圧と加速度の間の換算係数をかけてやる必要があります。

フーリエ解析は時刻歴波形は正弦波の組み合わせで構成されるという仮定の下で計算を行っています。FFTの結果は横軸で示される周波数の正弦波の振幅を示しています。
電圧と加速度の換算係数をかけてやると、FFTの縦軸はその周波数成分を持つ加速度振幅を示しています。

ここで1つ問題があります。FFTはサンプリング周波数により分解能が変わります。FFTによる周波数分析は正確にいうと、離散値なので、ジャストの周波数のもをだけを表しているのではなく、ある範囲の周波数範囲にある成分を表しています。
このため分解能が変わると周波数範囲が変わり、同じ波形を分析しても振幅が変わります。
これでは分解能が異なるデータ同士は比較できないなどの問題が生じます。
そのため、周波数幅で振幅を基準化して、1Hzあたりの振幅としたものがPSDです。
PSDならサンプリング周波数が異なるデータ同士の比較ができます。

要はフーリエ振幅(FFT)はサンプリング周波数・分解能により変わる値であり、PSDはそのようなことのないように周波数幅で基準化した値という差があります。

なお、2乗表示したものをパワースペクトルと呼び、それを周波数で基準化したものをPSDと呼びますが、PSDは表示方法によって2乗した状態のあたいを表示(パワー表示)するときと、2乗した値の平方根を計算して表示することがありますので、使用する際には縦軸の表示方法については要注意です。

一般に加速度センサー信号の出力は電圧です。

縦軸は係数をかけていない状態では#1さんがおっしゃるように計測した電圧の値を示しています。

よって、縦軸に物理的な意味を持たせるのには、電圧と加速度の間の換算係数をかけてやる必要があります。

フーリエ解析は時刻歴波形は正弦波の組み合わせで構成されるという仮定の下で計算を行っています。FFTの結果は横軸で示される周波数の正弦波の振幅を示しています。
電圧と加速度の換算係数をかけてやると、FFTの縦軸はその周波数成分を持つ加速...続きを読む

Qn数?N数とはどのような意味ですか?

こんにちは。
よく、サンプルテスト等でn数?N数という言葉を聞くのですがどのような意味ですか?
テスト回数を意味するのでしょうか?

ご存知の方、教えてください。
宜しくお願い致します。

Aベストアンサー

[簡単な例]
りんごの重量を10個量ってみた
→n=10

nはnumberの頭文字です。

Q球を任意の平面で切ったときの体積

質問させてください。

半径:r の球があり、
それを任意の平面で切ったとき、
底面(切り口)からの高さをHとします。

その切り取られた部分の体積Vを求める公式が、
V=(π/3)×H^2×(3r-H)
となっていました。

公式をみてもなぜそうなるかが全くわかりません。
わかる方おられましたらぜひご教授ください。
宜しくお願いします。

Aベストアンサー

図より、高さxにおける断面積は{r^2-(r-x)^2}*πとなるので、
積分範囲0~Hでxについて積分すればよい。

∫{r^2-(r-x)^2}×π dx
=∫(2rH-H^2)×π dx
=πrx^2-πx^3/3
=(π/3)×H^2×(3r-H)


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング