プロが教えるわが家の防犯対策術!

陰関数の第2次導関数の証明のやりかたなのですが、
dy/dx=-f(x)/f(y)
ですので、
d^2y/dx^2 は d(dx/dy)/dx = d(-f(x)/f(y))/dx
となり、後は
f(x)/f(y)を微分するだけなのはわかるのですが、
一般的な微分公式にあてはめた場合、
-f(xx)f(y)×f(yx)f(x)/f(y)^2
と成るはずなのですが、
答えは
d^2y/dx^2=-( f(xx)f(y)^2-2f(xy)f(x)f(y)+f(yy)f(x)^2 )/ f(y)^3
となり、途中の計算課程が分かりません。
私は何の認識を誤っているのでしょうか?
詳しく教えてください。よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

解き方の方針は合っています。


しかし、結論から言うと
  (d/dx)Fx = Fxx
  (d/dx)Fy = Fyx
は成り立たないのです。


多変数関数の合成関数の微分を思い出しましょう。
2変数関数F(x,y)のx,yがそれぞれtの関数であるとき、F(x(t),y(t))をtで微分すると、
  dF/dt = (∂F/∂x)*(dx/dt) + (∂F/∂y)*(dy/dt)
となりますね。
今回、yはxの関数ですから、先ほどのtがxになったと思って、F(x,y(x))をxで微分してみましょう。
  dF/dx = (∂F/∂x)*(dx/dx) + (∂F/∂y)*(dy/dx)
     = Fx*1 + Fy*(dy/dx)
     = Fx + Fy*(dy/dx)
となりますね。

では本題に戻ります。
FxもFyもx,yについての2変数関数で、さらにyはxの関数ですから、Fx,Fyをxで微分しようと思ったら、合成関数の微分法を適用しなければなりません。
すなわち、
  (d/dx)Fx = Fxx + Fxy*(dy/dx)
  (d/dx)Fy = Fyx + Fyy*(dy/dx)
とするのが正しいのです。
この考え方で、 d(-f(x)/f(y))/dxの右辺を根気よく整理していけば正しい式にたどり着くと思いますよ。
    • good
    • 4
この回答へのお礼

ご解答ありがとうございました。
とてもわかりやすく、解答までスッキリと導けました。
確かに合成関数の偏微分法を忘れていて、
自分の弱点も見つけられました。

ありがとうございました。

お礼日時:2009/07/04 14:39

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q2階微分d^2y/dx^2を詳しく教えてください

微分=傾き=tanθ=dy/dxと言うのは入門書でなんとかわかったのですが
2階微分=傾きの変化率(傾きの傾き)=d^2y/dx^2
のこのd^2y/dx^2がなぜこうなるのかぜんぜんわかりません。
dy/dxがどう変化してd^2y/dx^2となるのか教えてください。
いろいろ本やネットで調べましたが傾き=tanθ=dy/dxまでは入門書でも
詳しく書かれているのですがd^2y/dx^2へはどの解説でもいきなり飛んでいってしまいます。

Aベストアンサー

表記の仕方ですか?
dy/dxは 
yをxで微分するということです
2階微分はdy/dxをさらにxで微分するということです
dy/dxのyのところをdy/dxにおきかえれば
d(dy/dx)/dx=d^2y/dx^2
見た目ではdが2回掛かっているからd^2
dxの部分も2回掛かっているのでdx^2なんですが
dを1つの変数とみたり、dxを1つの変数と見てたりして分かりにくいかもしれません
これはそう決めたからなんです
ある程度覚えるしかないです

Q陰関数の定理がわかりません

陰関数の定理について、
証明はまだ習わないで、定理だけいきなり出てきたのですが、
読んだだけではいまいち意味がつかめませんでした。
この定理が何をいおうとしているかわかり易く
説明していただけないでしょうか?
(漠然とした質問で申し訳ありません)
___________________________________
 陰関数の定理:
f(x, y) をR2 におけるC1 級関数とし,
点(a, b) において
f(a, b) = 0; fy(a, b) ≠ 0とする.
このときa を含むある小さな開区間I をとれば
I の上で定義されたC1 級関数
y = φ(x) で次の条件を満たすものがただ1つ存在する:
b = φ(a),
f(x, φ(x)) = 0 (x は 閉区間I内),
さらに
φ’(x) = -{fx(x, φ(x))}/{fy(x, φ(x)}
が成立する.
___________________________________

Aベストアンサー

とりあえず,もうちょっと偏微分や関数の勉強を
頑張ってください.
何か根本的な部分を勘違いしている可能性があります.

>f(x,y)=0はそもそもxy平面上でのことで、3次元ではないのに、
>どうやって“fy(a, b)”を考えることができるのでしょうか?
>fy(a, b)は3次元的に考えないと値を出せないと思うのですが、、、

これは次のように表現を変えてみましょう

f(x)=0はそもそも数直線上でのことで、2次元ではないのに、
どうやって“f'(a)”を考えることができるのでしょうか?
f'(a)は2次元的に考えないと値を出せないと思うのですが、、、

おっしゃってることが「おかしい」ことがお分かりになりますか?

f(x,y)というのは,R^2上の関数fの点(x,y)での値です.
したがって,z=f(x,y) と考えれば,これは
確かにR^3での「グラフ」になります.
これは y=f(x) が平面のグラフになることと同じです

翻って,f(x,y)=0 というのは,
R^2の点(x,y)でf(x,y)=0となる点(の集合)のことです.
これは f(x)=0 の場合は「解」に相当しますが,
f(x,y)=0も「解」(の集合)とみなせばいよいだけです.

また,偏微分f_y(x,y)も単に点(x,y)での値に過ぎませんので
3次元とか考えずに計算できます.

陰関数の定理というのは,
陰関数f(x,y)=0を,y=φ(x)という形で表現できる
ということを(特定の条件下で)保証する定理で
実際は,いろいろな理論の根底で使われます.

とりあえず,もうちょっと偏微分や関数の勉強を
頑張ってください.
何か根本的な部分を勘違いしている可能性があります.

>f(x,y)=0はそもそもxy平面上でのことで、3次元ではないのに、
>どうやって“fy(a, b)”を考えることができるのでしょうか?
>fy(a, b)は3次元的に考えないと値を出せないと思うのですが、、、

これは次のように表現を変えてみましょう

f(x)=0はそもそも数直線上でのことで、2次元ではないのに、
どうやって“f'(a)”を考えることができるのでしょうか?
f'(a)は2次元的に...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q2変数関数の極限値の解き方(色々なケース)

以下の8問の2変数関数の極限値を求めてる問題を解いてみたのですが
計算結果が正しいか自信がありません。
わかる方、ご指導よろしくお願いいたします。

【問題】
次の極限値は存在するか。存在する時には、その極値を求めよ。

(1) lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)は極限値は0をとる。


(2) lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2+2y^2)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2+2y^2)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)は極限値は0をとる。


(3) lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/(x^2+2y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/(x^2+2y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)は極限値は0をとる。


(4) lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x-y^2)/(x^2-y) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x-y^2)/(x^2-y) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)は極限値は0をとる。


(5) lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (y^2)/(x^2+y^2) = 1
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (y^2)/(x^2+y^2) = 0
上記より、異なる近づけ方をすると極限値が1つに定まらない。
よって、lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)は極限値を持たない。


(6) lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2-y^2)/(x^2+y^2) = -1
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2-y^2)/(x^2+y^2) = 1
上記より、異なる近づけ方をすると極限値が1つに定まらない。
よって、lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)は極限値を持たない。


(7) lim [(x,y)→(0,0)] (xy)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/(x^2+y^2)は極限値は0をとる。


(8) lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2y)/(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2y)/(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)は極限値は0をとる。


もし、導き方がおかしいようなら、ご指摘いただければと思います。
以上、ご指導のほどよろしくお願いします。

以下の8問の2変数関数の極限値を求めてる問題を解いてみたのですが
計算結果が正しいか自信がありません。
わかる方、ご指導よろしくお願いいたします。

【問題】
次の極限値は存在するか。存在する時には、その極値を求めよ。

(1) lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/√(x^...続きを読む

Aベストアンサー

訂正
(1)は式に絶対値をつけとかんといかんかった。
|(xy)/√(x^2+y^2)|=|x|/√(x^2+y^2)・|y|/√(x^2+y^2)・√(x^2+y^2)
≦1・1・√(x^2+y^2) →0
(3)と(8)も。
失礼しました。

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Qz = x^y の偏微分

z = x^y の偏微分


こんにちは。
数学の偏微分に関しての質問です。


z = x^y を偏微分せよ


という問題について教えて欲しいのです。

・偏微分可能であることを示す
・偏専関数を求める

これは例題でやったのですが、実際に偏微分するときどう手をつければいいのかわからず…。
偏微分というのがどういう事なのかをまず理解してないのも一つなのですが。

実際に解答するならばどう答えればいいのでしょうか。

宜しくお願いします。

Aベストアンサー

>偏微分というのがどういう事なのかをまず理解してないのも一つなのですが。
xで偏微分するときはyを定数と見做してxの微分をする。
yで偏微分するときはxを定数と見做してyの微分をする。
ただ、これだけのことです。

z=x^y=e^(ylog(x))

z_x≡∂z/dx=e^(ylog(x))*∂(ylog(x))/∂x
=e^(ylog(x))*y/x=(y/x)x^y

z_y≡∂z/dy=e^(ylog(x))*∂(ylog(x))/∂y
=(x^y)log(x)

Q2変数関数の極値について

f(x,y)=(x^3)(y^2)の極値を求めよ
という問題なのですが、偏導関数が0となる点を調べたところ
x軸とy軸という解が出ました。しかし、これをDに代入すると
D=0となり、極値の判定ができません。
D=0の場合、関数により対処法が違うということは知っているのですが
この場合どうすればいいかわからないのでお力をお借りしたいです。
回答よろしくお願いします。

Aベストアンサー

Dの定義式は何でしょうか?
停留点候補を(p,q)とすると
D(p,q)=fxy(p,q)^2 - fxx(p,q)fyy(p,q)
でいいですか?

>偏導関数が0となる点を調べたところ
>x軸とy軸という解が出ました。

停留点候補は
(0,a),(b,0) (a, bは任意の実数)

>この場合どうすればいいかわからないので
D(0,a)=D(b,0)=0  (a, bは任意の実数)

極値の定義に基づいて判定すればいいでしょう。
極小値の定義(狭義の定義):
 (x0,y0)の近傍の任意点(x,y)に対してf(x0,y0)<f(x,y)を満たすとき
 (x0,y0)でf(x,y)は極小値f(x0,y0)をとるという。

極大値の定義(狭義の定義):
 (x0,y0)の近傍の任意点(x,y)に対してf(x0,y0)>f(x,y)を満たすとき
 (x0,y0)でf(x,y)は極大値f(x0,y0)をとるという。

これらの定義を使えば f(x,y)=x^3*y^2について

停留点候補
(0,a),(b,0) (a, bは任意の実数)
のいずれについても(狭義の意味での)極値を取らないことが分かります。
∵f(0,a)=0=f(0,y)=0 (y≠a),
f(0,a)=0<f(x,a)=x^3*a^2 (x>0,a≠0),
f(0,a)=0>f(x,a)=x^3*a^2 (x<0,a≠0),
  極大値、極小値の(狭義の)定義も満たさない。
∵f(b,0)=0=f(x,0) (x≠b),
  f(b,0)=0<f(b,y)=b^3*y^2 (y≠0,b>0)
  f(b,0)=0>f(b,y)=b^3*y^2 (y≠0,b<0)
  極大値、極小値の(狭義の)定義も満たさない。
また停留点(0,0)について
  f(0,0)=0=f(0,y) (y≠0)
  f(0,0)=0=f(x,0) (x≠0)
  f(0,0)=0<f(t,t)=t^5 (t>0)
  f(0,0)=0>f(t,t)=t^5 (t<0)
  極大値、極小値の(狭義の)定義も満たさない。
以上から、(狭義の意味で)極値が存在しないことが言えます。

参考URL:http://ja.wikipedia.org/wiki/極値

Dの定義式は何でしょうか?
停留点候補を(p,q)とすると
D(p,q)=fxy(p,q)^2 - fxx(p,q)fyy(p,q)
でいいですか?

>偏導関数が0となる点を調べたところ
>x軸とy軸という解が出ました。

停留点候補は
(0,a),(b,0) (a, bは任意の実数)

>この場合どうすればいいかわからないので
D(0,a)=D(b,0)=0  (a, bは任意の実数)

極値の定義に基づいて判定すればいいでしょう。
極小値の定義(狭義の定義):
 (x0,y0)の近傍の任意点(x,y)に対してf(x0,y0)<f(x,y)を満たすとき
 (x0,y0)でf(x,y)は極小値f(x0,y0)をとると...続きを読む

QC1級関数って何ですか?

級数の勉強をしていると、
” C1級数関数 ”
(※ 1はCの右上の小さい文字。表記できませんでした。)
という用語が出てきたのですが、どういう意味なのかわかりません。
どういう関数なのか教えてください。

Aベストアンサー

こんにちは.Esnaです.

C1級は,1回微分可能な関数のことです.
Cn級や,C∞級(e^x,sin x など)など微分可能回数によって関数を分類したものです.

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q2変数テイラー展開が分かりません。

見ていただきありがとうございます。

問題はこちらです。
次の関数f(x,y)のx=0、y=0におけるテイラー展開を3次の項まで求めよ。

f(x,y)=1/ルート(4ーx^2ーy^2)

解き方、解答ともに分かりません。

もし分かる方がいましたら回答よろしくお願いします。

Aベストアンサー

以下の参考URLに定義式と解き方の例がありますので、よく読んでやってみて下さい。
http://markun.cs.shinshu-u.ac.jp/learn/biseki/no_9/cont09_3.html
http://www.f-denshi.com/000TokiwaJPN/10kaisk/100ksk.html
http://gandalf.doshisha.ac.jp/~kon/lectures/2005.calculus-II/html.dir/node35.html
ただ、ひたすら、3階までの偏導関数を求めてx=y=0を代入し、定義式に代入するだけです。

やってみて分からなければ、やった途中計算を書いたうえで、行き詰ってわらない箇所の質問して下さい。


人気Q&Aランキング