マンガでよめる痔のこと・薬のこと

問題
5人がぐう、ちょき、ぱー、を1回だけ出してじゃんけんをするとき「あいこ」になる確率はいくつか?ただし5人ともぐう、ちょき、ぱーを同じ確率で出す

解答 17/27

自分の回答
1)5人がぐーのみ、ちょきのみ、ぱーのみの場合
(1/3)^5*3=1/81

2)5人のうち3人がぐー、ちょきー、ぱーを出せばいいので
5C3*(1/3)^3=10/27

1)2)より1/81+10/27=31/81となってしまします
どこが違うのでしょうか?

A 回答 (3件)

ABCをぐー、ちょき、ぱーとします。


五人は
()()()()()と並んでいることにします。

5人が同じものをだす→AAAAA、BBBBB、CCCCC(3通り)
4人が同じものをだす→不可
3人が同じものをだす→AAABCを範型にして、5C3×2C1×3
2人が同じものをだす→AABBC(AABCC)を範型にして、5C2×3C2×3
1人が同じものをだす→不可

以上です。3人のとき最後に3を掛けたのはBBBとCCCでも同様ですから。2人のときも類比的な理由です。

上記はあまり冴えない解法かもしれません。
もっとスマートなやり方がきっとあるはずです。
さて貴君の解法のどこに落とし穴があったのでしょうか。
(2)の式だけを見れば、いわゆる反復試行の確率の出し方とうり二つですね。
3人の選び方の数をCで求めてから、その3人のなかでぐー、ちょき、ぱーがぐるっと回転しないのでしょうか。そこはおくとして、3分の1の3乗の意味がちょっと明晰でないような。選ばれた3人がそれそれ違うものを出すことを式化しているのでしょうが、あとの2人はどうなるのでしょう。3人と同じものをだすと、5人が同じものを出すことになってしまいます。でも、3人であいこにしておくという着想は魅力的ですからなんかいい方法があればいいのですが。
    • good
    • 0
この回答へのお礼

ありがとうございます
後半の説明がとても助かりました

お礼日時:2009/07/08 00:07

2) の方に見落としがあります。



5人のうち3人がグー、チョキ、パーを出せばいい=
5人から3人を選んでその3人がグー、チョキ、パーなら
残りの2人は何を出してもあいこになる、と考えて
5C3*(1/3)^3=10/27
と計算しているのだと思いますが、これは間違いです。

5人のうちから3人を選んでその3人がグー、チョキ、パーに分かれなくても、
残りの2人の出した手によってはあいこになることもあるからです。

5人でジャンケンをしてあいこになる場合は
・5人全員が同じ手を出す
・グー、チョキ、パーを出した人がそれぞれ最低一人はいる
のどちらかです。

このうち
・5人全員が同じ手を出す
は、いうまでもなく全員グー、チョキ、パーの3通りです。

・グー、チョキ、パーを出した人がそれぞれ最低一人はいる
こちらは、同じ手を出した人数の組み合わせは
(3人、1人、1人)か(2人、2人、1人)しかありません。

5人を(3人、1人、1人)に分ける分け方は
5C3*2C1=20通り
これはグーが3人、チョキが3人、パーが3人の場合が考えられるので
3をかけて60通り

5人を(2人、2人、1人)に分ける分け方は
5C2*3C2=30通り
これもグーが1人、チョキが1人、パーが1人の場合が考えられるので
3をかけて90通り

5人のグー、チョキ、パーを出す組み合わせの総数は3^5=243通り

よって
(3+60+90)/243=153/243=17/27

となりますが、No.1の回答にあるように
「あいこにならない確率を求めて、1から引く」
の方が簡単かもしれませんね。
    • good
    • 0
この回答へのお礼

ありがとうございます
間違いの指摘大変参考になりました

お礼日時:2009/07/08 00:06

勝負がつく確率を求めた方がいいと思います。


4対1の場合の数が5C1、3対2が5C2、出し方がそれぞれ6とおりで
確率にするため(1/3)^5をかけると(5+10)*6*(1/3)^5=10/27になります
    • good
    • 0
この回答へのお礼

やはりそうですか
解答のほうもそちらのやり方が書いてありました

お礼日時:2009/07/08 00:08

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q5人でジャンケンをしてあいこになる確率

はじめまして。

5人でジャンケンをしてあいこになる確率を求めます。

(1)全員が同じ手を出す場合。
最初の人が出した手を同じのを残り4人がだす確率となるので、
1 * 1/3 * 1/3 * 1/3 * 1/3 = 1/81

(2)3種類の手がすべて出る場合。
(A)手の出方が○○○△(チェック)となる場合。
○○○△(チェック)が1列に並ぶ場合を考える。
○がグーチョキパーのどの手になるかで3通り。
また、△の並び方で5C1通り、残る○3つと(チェック)1つの並び方で4C1通り
よってこの場合
3 * 1/3^5 * 5C1 * 4C1 = 20/81
(B)手の出方が○○△△(チェック)となる場合。
○○△△(チェック)が1列に並ぶ場合を考える。
(チェック)がグーチョキパーのどの手になるかで3通り。
また、○の並び方で5C2通り、残る△2つと(チェック)1つの並び方で3C1通り
よってこの場合
3 * 1/3^5 * 5C2 * 3C1 = 30/81
(A),(B)はそれぞれ排反なので、(2)の確率は20/81 + 30/81 = 50/81

以上(1),(2)はそれぞれ排反なので、求める確率は1/81 + 50/81 = 51/81 = 17/27



この計算は正しいでしょうか?
また、より効率のいい計算方法があれば教えていただきたいです。

はじめまして。

5人でジャンケンをしてあいこになる確率を求めます。

(1)全員が同じ手を出す場合。
最初の人が出した手を同じのを残り4人がだす確率となるので、
1 * 1/3 * 1/3 * 1/3 * 1/3 = 1/81

(2)3種類の手がすべて出る場合。
(A)手の出方が○○○△(チェック)となる場合。
○○○△(チェック)が1列に並ぶ場合を考える。
○がグーチョキパーのどの手になるかで3通り。
また、△の並び方で5C1通り、残る○3つと(チェック)1つの並び方で4C1通り
よってこの場合
3 * 1/3^5 * 5C1 * 4C1 = 20/81
(B)手の出方...続きを読む

Aベストアンサー

その計算で合ってます。


別の考え方は、
あいこにならないのは、5人がグーチョキパーのうち2種類の手を出したときです。
たとえば、5人がグーとチョキだけを出す確率は、
(2^5-2)/3^5
2を引いているのは、5人ともグーまたはチョキを出した場合を除くためです。

グーとパー、チョキとパーの場合も含めると、
3*(2^5-2)/3^5 = 90/243 = 10/27

あいこになる確率は、
1 - 10/27 = 17/27

QA地点からC地点へ車で行くには、橋を渡るル-トと、B地点を経由するル-

A地点からC地点へ車で行くには、橋を渡るル-トと、B地点を経由するル-トがある。
直行ル-トの橋は100日に1日の割合で通行止めになり、
A地点からB地点までは40日に1日、
B地点からC地点までは13日に1日
の割合でそれぞれ濃霧のため通行止めになるとすると、A地点からC地点へいけなくなる確率は?

回答は、1/1000 

1/100 × 1/40 × 1/13 のような気がするのですが?
どうして1/1000になるのでしょうか?

Aベストアンサー

>1/100 × 1/40 × 1/13 のような気がするのですが?
>どうして1/1000になるのでしょうか?

A地点からB地点までと、B地点からC地点までは、少なくと
もどちらか一方が、通行止めになれば通れません。

1/100 × ( 1/40 + 1/13 - 1/40 × 1/13 )

になると考えられます。


このカテゴリの人気Q&Aランキング