[PR]ネットとスマホ OCNでまとめておトク!

こんにちは。

ラプラス変換で微分方程式を解く問題をといておりましたところ、
以下の式が出てきました。

L{X(t)} = (3+2s)/{(1+s)(2+s)(3+s)}
L{Y(t)} = (2+4s+s^2)/{s(2+4s)}

これを逆ラプラス変換してX(t)およびY(t)を求めようと思います。
部分分数展開して積分を行ったのですが、その際どうしても以下の
積分を求める必要が出てきます。

∫exp(s)/s ds ……(1)


∫exp(s)*s^n ds
において、nが自然数なら、部分積分で求めることができるのですが、
nが負の整数の場合、部分積分を行うと(1)で手詰まりになってしまいます。

仮に(1)を部分積分しても、
[(log|s|)exp(s)] - ∫(log|s|)exp(s) ds
となり、∫(log|s|)exp(s) ds を求めることができないので、先に進めません。

どうやれば(1)の積分は解けるのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (3件)

単純に部分分数分解を間違っているだけですね。


それとも、逆ラプラス変換を勘違いしているか、
どちらかです。

逆ラプラス変換は、ふつうは積分をして求めません
ラプラス変換して対称の関数になる関数を探す作業をします。

また、∫exp(x)/x dx は初等関数で解析的に解くことはできません。
ですが、複素広義積分の計算はできます
    • good
    • 0
この回答へのお礼

ご指摘の通り、公式に当てはめて唸ってました……

部分分数展開してsin、cos、ヘヴィサイドの階段関数のラプラス変換の公式
を逆に当てはめたところ、無事解くことができました。

ありがとうございます。

お礼日時:2009/08/12 00:20

>これを逆ラプラス変換してX(t)およびY(t)を求めようと思います。


>部分分数展開して積分を行ったのですが、その際どうしても以下の
>積分を求める必要が出てきます。
>∫exp(s)/s ds ……(1)

途中計算が書いてないのでなんともいえませんが、
(1)式は出てきませんね。
どこかで計算ミスしていませんか?

>L{Y(t)} = (2+4s+s^2)/{s(2+4s)}
これを部分分数に展開すると定数項に「1/4」が出てきますが、
この項はY(t)にDiracのδ関数が含まれることを意味しますが、
解こうとしているシステムではt=0でDiracのδ関数のような入力が発生するような現象が伴いますか?
    • good
    • 2

その x(t), y(t) ならそんな積分はでてこないような気がするんだけどなぁ.... y(t) の方に δ がはいるのが気になるけど.


ちなみにその原始関数は (初等的には) 表現できません.
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q教えてください。不定積分 ∫(e^x /x^3)dx

教科書で問題を解いてるときに 
∫(e^x /x^5)dx
という積分が出てきました。1日考えてみて置換積分を試したりしてもも糸口すら見つかりません。
出来るなら解答までの計算式も含めて、どうかよろしくお願いします。

一応ですが、元の問題は (x^2)y''-5xy'+8y=e^x  です。
もしこの積分が必要ない時には問題の1歩目から間違ってる事になるのでご指摘お願いします。

Aベストアンサー

ANo.2さんの回答が「内容確認中」なので重複しているかもしれません。

途中で∫(e^x /x^5) dx は出てきます。∫(e^x /x^5) dx は部分積分法を使って、∫(e^x /x) dx を含む形に変形できますが、∫(e^x /x) dx は初等関数で表わすことはできません。

問題の解は、指数積分関数 Ei(n,x) を使うと
   y = -(1/48)*( x - 3 )* ( x^2 + 4*x + 2 )*exp(x) - (1/48)*x^2*[ { Ei(1,-x) - 48*C1 }*x^2 - 12*Ei(1,-x) - 48*C2 ] ]
となります。指数積分関数は
   Ei(n,x) = ∫[t = 1~∞] exp(-x*t)/t^n dt
で定義されますが、解の中に含まれるのは n = 1 場合の関数
   Ei(1,-x) = ∫[t = 1~∞] exp(x*t)/t dt
です。

(解法)
元の微分方程式の両辺を x^2 で割ると
  y'' - 5*y'/x + 8*y/x^2 = exp(x)/x^2
となるので、z = y/x^2 おくと z(x) に関する微分方程式
   z'' - z'/x = exp(x)/x^4
となります。さらに p = z' とおけば、p(x) に関する1階の微分方程式
   p' - p/x = exp(x)/x^4
になります。この解は
   p = x*∫exp(x)/x^5 dx + C1*x
問題の積分 ∫exp(x)/x^5 dx は部分積分を繰り返せば
   ∫exp(x)/x^5 dx = -(1/24)*exp(x)*( 1/x + 1/x^2 + 2/x^3 + 6/x^4 ) + (1/24)*∫exp(x)/x dx
なので
    p = -(1/24)*exp(x)*( 1/x + 1/x^2 + 2/x^3 + 6/x^4 ) + (1/24)*∫exp(x)/x dx + C1*x
したがって
   z = ∫p dx = -(1/24)*∫exp(x)*( 1/x + 1/x^2 + 2/x^3 + 6/x^4 ) dx + (1/24)*∬exp(x)/x dx + C1*(x^2/2) + C2
最終的には
   y = x^2*z
から y を計算しますが、以下の性質を使えば Ei(1,-x) で表わすことができます。
   ∫exp(x)/x dx = -Ei(1,-x)
   ∫exp(x)/x^2 dx = -exp(x)/x - Ei(1,-x)
   ∫exp(x)/x^3 dx = -(1/2)*exp(x)/x^2 - (1/2)*exp(x)/x - (1/2)*Ei(1,-x)
   ∫exp(x)/x^4 dx = -(1/3)*exp(x)/x^3 -(1/6)*exp(x)/x^2 -(1/6)*exp(x)/x - (1/6)*Ei(1,-x)
   ∬exp(x)/x dx = - exp(x) - x*Ei(1,-x)

ANo.2さんの回答が「内容確認中」なので重複しているかもしれません。

途中で∫(e^x /x^5) dx は出てきます。∫(e^x /x^5) dx は部分積分法を使って、∫(e^x /x) dx を含む形に変形できますが、∫(e^x /x) dx は初等関数で表わすことはできません。

問題の解は、指数積分関数 Ei(n,x) を使うと
   y = -(1/48)*( x - 3 )* ( x^2 + 4*x + 2 )*exp(x) - (1/48)*x^2*[ { Ei(1,-x) - 48*C1 }*x^2 - 12*Ei(1,-x) - 48*C2 ] ]
となります。指数積分関数は
   Ei(n,x) = ∫[t = 1~∞] exp(-x*t)/t^n dt
で定...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Q積分の問題

∫1/logx dx この積分ってどうやってやりますか?
詳しい方法をお願いします。

Aベストアンサー

定積分ではないので少し違うかもしれませんが、対数積分と呼ばれるものです。

下記URLを参照してください。
http://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0%E7%A9%8D%E5%88%86

Qexp(ikx)の積分

exp(ikx)のマイナス無限大から無限大までの
積分の公式または方法はありますか?
iは虚数でkは定数です。

Aベストアンサー

それはδ関数になります。普通に積分しても答は出ません。

たとえば、

∫[-a→a] exp(ikx) dx = 2a [sin ka]/[ka] = 2a sinc(ka)

2a sinc(ka)は-∞から+無限大までkで積分すると
aによらず面積が2πになる関数で、a→+∞の極限をとったものを
2πδ(x)と書きます。これがδ関数です。なので、

∫[-∞→∞] exp(ikx) dx = 2πδ(x)

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Q∫log sinx dxや∫log cosx dx のやり方

∫log sinx dxや∫log cosx dxの計算をやっているのですが、置換積分や部分積分をフル活用しているのですが、先が見えません。助けて下さい。

Aベストアンサー

こんにちは。不定積分ではなく定積分でお答え
します。広義積分を習っていることを仮定しますが…
でも、
∫_{x=0~π/2}log (sinx) dx
についてだけです。
まず、上の積分が収束するかという問題があります。
(実際には、絶対収束します。)
この収束を示すことが必要なら補足しますので、
ここでは省きます。
(ヒントは(√x)log(sinx)に対してロピタルの定理を使い、x→+0とします。)

以上のことを頭の隅において積分を計算します。そこで、
I=∫_{x=0~π/2}log (sinx) dx
とおきます。ここで、xをπーxに、又はπ/2-x
と変数変換すると
I=∫_{x=π/2~π}log (sinx) dx
I=∫_{x=0~π/2}log (cosx) dx
となります。これらは、右辺の広義積分が収束して
値がIに等しいことを意味します。一方、
2I=∫_{x=0~π}log (sinx) dx
であり、x=2tとおくと
I=∫_{x=0~π/2}log (sin2t) dt
 =∫_{x=0~π/2}log (2 sint cost) dt
 =∫_{x=0~π/2}log 2 dt+∫_{x=0~π/2}log (sint) dt+∫_{x=0~π/2}log (cost) dt
=π/2*log 2+2I
∴ I=ーπ/2*log 2
となります。ご参考までに。

こんにちは。不定積分ではなく定積分でお答え
します。広義積分を習っていることを仮定しますが…
でも、
∫_{x=0~π/2}log (sinx) dx
についてだけです。
まず、上の積分が収束するかという問題があります。
(実際には、絶対収束します。)
この収束を示すことが必要なら補足しますので、
ここでは省きます。
(ヒントは(√x)log(sinx)に対してロピタルの定理を使い、x→+0とします。)

以上のことを頭の隅において積分を計算します。そこで、
I=∫_{x=0~π/2}log (sinx) dx
とおきます。...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む