No.1ベストアンサー
- 回答日時:
こんばんわ。
与えられた2次関数の式から頂点の座標を求めるところまではいいと思います。
「x軸と異なる2点で交わるように、aの値が変化する」という条件を考えましょう。
これはaがとりうる値の範囲を与えることになります。
通常ならば「判別式」といきたいところですが、
グラフを考えると下に凸になるので頂点がx軸よりも下にあればよいことに気づきます。
この判別式と頂点のy座標の関係は同じことをしめしています。
すなわち「同値」ということです。
頂点のx座標とy座標をそれぞれX,Yとでもおいて、aで表します。
比較的簡単な変形でaを消去できます。
最後に、aの値には範囲がついているので、それをXの値の範囲になるよう置き換えます。
No.4
- 回答日時:
#1です。
a<0,1<a……(1)
x=-a
より x<-1,x>0
x=-aなので、(1)の不等式も-aの形にしましょう。
両辺に-1をかけるので、不等号の向きに注意です。
その後、-aをxに置き換えます。
>「逆に この図形上の任意の点は条件を満たす」
これは「ほんとにこの図形上にあれば成り立つの?」ということを保証するものです。
いまは、2次関数という連続関数を扱っているので、特に問題ありません。
分数関数(分母が0となるような場合)などが出てくるときには、
このような検証をしないといけません。
表現を変えると、ありえない(とることのない)値を答えに含んでいないかどうかを確認しているということです。
No.3
- 回答日時:
ポイントが2つあります。
(1)y=x^2+2ax+aがx軸と異なる2点で交わるように、aの値
(2)放物線の頂点P(x,y)をaで表わす。
(1)はy=0とおいた判別式が正ということからa<0またはa>1
(2)y=x^2+2ax+a=(x+a)^2+a-a^2より頂点座標P(x,y)はx=-a, y=a-a^2
故に
y=x-x^2, x>0 またはx<-1
を図示すればよい
No.2
- 回答日時:
>指針・解答を見て解きましたが、途中から分からなくなってしまいました…
>分かりやすく説明して頂けると嬉しいです^^
解いた式を全部補足に書いて頂かないと、間違い箇所がわかりませんので、
それに付いて説明も不可能です。
あなたのやった解答をそのまま補足にお書き下さい。
放物線が2点でX軸と交わるための条件
右辺=0の判別式 D>0 →aの範囲が決まります。
頂点の座標 (x,y)=(-a,a-a^2)は分かりますね。
>aを消去して、x,yの関係式を導く。
これも出来ますね。
この回答への補足
P(x,y)とする
放物線がx軸と異なる2点で交わるための条件は
D/4=a^2-a>0
これを解いて a<0,1<a ……(1)
x^2+2ax+a=(x+a)^2-a^2+a であるから
x=-a,y=-a^2+a
x=-aからa=-x ……(2)
これをy=-a^2+aに代入すると y=-x^2-x
また、(2)を(1)に代入して x<-1,x>0 ←
よって Pは放物線y=-x^2-xのx<-1,x>0の部分にある
逆に この図形上の任意の点は条件を満たす
こんな感じです。左矢印の部分くらいから混乱してしまいました(´・ω・`)よろしくお願いします…
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
放物線の準線について
-
【至急】困ってます! 【1】1、...
-
放物線の形は1種類?
-
x軸と2点(α,0),(β,0)で交わ...
-
頂点が点(2,6)で、点(1,4)を通...
-
放物線の回転図形の式
-
双曲線の焦点を求める時はなぜ√...
-
焦点のx座標が3、準線が直線x=5...
-
高一数学 二次関数の式で y=a...
-
放物線と円の共有点の個数
-
放物線y=2x² を平行移動した曲...
-
y=ax^2+bx+cのbは何を表してい...
-
【 数I 2次関数 】 問題 放物線...
-
放物線についての質問です。
-
aがすべての実数値をとって変化...
-
放物線の方程式のbの値はグラフ...
-
高校の数学です。
-
z=rからz=ir は複素平面ですと...
-
放物線y=x^2+aと円x^2+y^2=9が...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の焦点,中心を作図で求め...
-
【至急】困ってます! 【1】1、...
-
放物線y=2x² を平行移動した曲...
-
2:1正楕円とは何ですか?
-
数学 不等式の表す領域
-
2つの楕円の交点の求め方が分...
-
双曲線の焦点を求める時はなぜ√...
-
添付画像の放物線はどんな式で...
-
tの値が変化するとき、放物線y=...
-
軌跡の「逆に」の必要性につい...
-
数学の問題です。教えてくださ...
-
楕円の書き方
-
【 数I 2次関数 】 問題 放物線...
-
放物線の対称移動の問題の答え...
-
X軸に関して対称といえる理由を...
-
噴水はなぜ放物線をえがくので...
-
この問題は「円の中心の軌跡を...
-
放物線z= x^2 + y^2上の点(1,2,...
おすすめ情報