人気マンガがだれでも無料♪電子コミック読み放題!!

非安定型マルチバイブレータの動作原理について教えてください。

A 回答 (1件)

電気的な話ですよね。



まず、2組のエミッタ接地回路があるとしましょう。
(電源とアースは共通です)
この回路にはコレクタ抵抗とバイアス用のベース抵抗が各々存在し、直流的に安定している状態です。
バイアス電圧はトランジスターが動作し始める手前ぎりぎりにしていきます。

ここで便宜上回路中のトランジスタにAとBと名前を付け、AのコレクタからBのベースへ、次にBのコレクタからAのベースへコンデンサーを各々繋ぎます。
これで回路は完成です。
この状態で電源を供給すれば、回路部品のばらつきでどちらかのトランジスターがONになります。
仮にAがONになった場合、Bのベース電流はコンデンサーを介してAからアースに流れ、BのトランジスターはONになる事はありません。
この状態ではAが動作するベース電流はBのコレクタからコンデンサを介して供給されています。
しかし、時間が経ってAのベースに繋がっているコンデンサに電気が貯まってくると、Aのベース電流は減りAは最後にはOFFになります。

AがOFFになれば、Aのコレクタ電圧が上がりBの方へ電流が流れ始めBがONになります。この時Aのベースに繋がっているコンデンサーに貯まった電気はBがONになった事で放電されます。

そして暫くすると、Bのベースに繋がったコンデンサーに電気が貯まりBのベースへの電流が減りBがOFFになる。そうすれば今度はAがONになる。

非安定マルチバイブレータこれを繰り返して発振行われます。
説明が解りにくくて申し訳ないですが、お判り頂けたでしょうか。
    • good
    • 0
この回答へのお礼

なんとなくわかりました
ありがとうございました。

お礼日時:2003/05/13 00:10

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qマルチバイブレータ回路の動作原理

マルチバイブレータ回路がなぜ交互に電流を流すのかわかりません。どうやらコンデンサーに蓄えられている電荷量が変化しているらしいことはわかりましたが、「交互に」というのがいまいち理解できません。どなたかわかりやすく説明してください。お願いします。

Aベストアンサー

 
 
>> コンデンサ電荷の変化らしいのはわかった、 しかし交互というのがいまいち <<


 ↓これですね。
http://www.technologystudent.com/images4/multi2.gif


1.
 ↓弛張(しちょう)発振を理解するときの定番のモデルです。
http://www.suginami.ac.jp/club/pcc/hoshino/img/shishi.GIF
中央で静止しないわけは、流れ出す慣性のために重心移動の変化に即応できず、行き過ぎる(水の捨て過ぎと補充し過ぎ)るからです。チョロチョロ流し込む時間が振動の周期になってます。
これを二つ背中合わせにした↓が、マルチバイブレータのモデルです。
http://www.bousaihaku.com/bousaihaku2/images/announce/prevention/18_2.jpg
水は全部こぼれる=徹底した行き過ぎです。 これも下図のように重心移動してます。B側が下がるとBの水が全部こぼれ、Aに注水されるので重心がA側にじわじわ移動、やがてシーソーが反転します。
 |
 |        ┌→→●B
 |A●→→→→┘
  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄変位
 |
 |     ┌←←←←●B
 |A●←←┘
  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄変位
 一般に、動きに行き過ぎ(あるいはガタ)がある系なら何でもこのタイプの発振を起こせます。例えば電磁石ベルは鐘を打つハンマーの慣性質量とコイルのインダクタンス(電気的慣性)が共に行き過ぎ役を担当してます。



2.
 ↓回路図
http://tsystemselectronics.com/images/products/astable-multivibrator.jpg
http://www.mononagrove.org/mgonline/electronics%20stuff/talkingelectronics/Page%2017_files/Multivibrator-flash-complete.gif

( 余談ですが念のため; もともとFlipFlopはambiguousな日常語で自走マルチをも含意してます。なのでformalな表現では、端的に bistable circuit 双安定回路 と言います。 )
閑話休題。


 半分の図です。

  電 源 電 圧
  |    │  
  Rc    Rb↓ Rb電流が水チョロチョロ。
  |    |
  |    |   右トランジスタのベース。
  ├─C─┴─┐ ベースは整流器であり
  |       │ 電位は+側に上昇できない。
  \        ▽ しかしマイナス側に下が
  |       | るのは自由。
  ┷       ┷
左側のトランジスタ。
接地したり離したりしている。
上図は離れてるのでCはRcで充電される。
その充電電流はRc→C→ベース→グランド。
Rcは小さくしてあるので充電は素早くて
電位は 短時間に電源電圧まで上昇する。


  ↓ そのあと左トランジスタがオンすると、


  電 源 電 圧
  |    │  
  Rc    Rb↓ Rb電流は水チョロチョロ。
  |    |
  |    |   
  ├─C─┴─┐ ベースは整流器であり
  |       │ 電位は+に上昇できないが
  |        ▽ マイナス側に下がるのは
  |       | 自由。
  ┷       ┷
左トランジスタがオンすると、
(*)
コレクタの電圧が電源電圧からグランドに急降下す
るので Cを通じて 右のベース電位も同じく急降下する。
今までプラス電位ギリギリだったのがマイナス電位に
急降下するので右トランジスタはオフする。
その後、
ししおどしの水チョロチョロと同じく CはRbでチョロ
チョロ充電される。ベースの電位が回復すると今度は
右トランジスタがオンして 上記の(*)の所に戻り、
左右の立場が入れ替わって繰り返す。


 以上です、電子回路に慣れてない人にとっては、Cが縦になってないだけで もうワケワカかも知れませんが。




3.
上記の「電圧が急変化するとCを通じて反対側も同じ変化が…」の理由の説明。
キャパシタ両端の電位差 V と蓄積電荷量 Q は単純に比例関係です。
  V ∝ Q
時間微分して
  dV/dt ∝ dQ/dt = 電荷の変化速度
右辺はキャパシタを通り抜ける電流であることはおわかりと思います。
  dV ∝ (通る電流)dt  …(3.3)
式を 『 もし通る電流が一定な状況ならば、変化時間dtが小さいほど電圧変化dVは小さい 』 と読みます。
 これによれば、
トランジスタが急激にオンして急降下する電圧波形が キャパシタの片端に加わると (両端の電圧は殆ど変化しないので) 反対端にほとんど同じ急降下波形が現れる、となります。 その際の「通る電流」は 急降下電圧振幅と キャパシタの反対側に居るRbで決まります。 端的に言うと「キャパシタは変化分だけを通す、直流は通さない」です。


 ということで、
意外でしょうが この瞬間のキャパシタ電荷は殆ど不変ですので、電荷∝水量 のアナロジーは成り立ちません。そのアナロジーにこだわると正しい理解に至れませんので要注意です。
 「しし脅しの水量」に対応してるのは「キャパシタの電荷」じゃなくて「キャパシタ片側をグランド基準に見た電位」なのです。その正負に応じてトランジスタスイッチがオン/オフします。 また、「水が全部こぼれる行き過ぎ」に対応してるのは「ベースの電位が負に大きく急降下する」ところです。




4.以下余談

トランジスタのスイッチ動作は、
部屋の壁に付いてる電灯のスイッチに似てまして、
http://www.411homerepair.com/ideas/Electrical_Wiring/pic/wallSwitch.gif
http://eed.stef.teicrete.gr/labs/epsl/site%20pic/clipart_wallswitch.jpg
指で上下させる出っ張りがベースの電位のようなものです。
  グランドより上だと接点がつながる。
  グランドより下だと接点が離れる。
と、
単純なものです。


 発振回路のタイプは、
バネと質量の共鳴振動を利用する Harmonic Oscillator、
行き過ぎや弛(たる)みを利用する Relaxation Oscillator
に大きく二分されます。
前者の代表例は水晶。原子レベルの結晶格子の振動そのものではなくマクロな形状の共振です。
後者の和名は 弛張(しちょう)発振で、代表例がこのマルチバイブレータです。


 マルチバイブレータ回路は「最初の一撃」がないと動き始めません。それは電源の素早い立ち上がりです。もし電源電圧がゆっくり上昇すると起動しません。そのプロセスは;
 電源の上昇による d(電源電圧)/dt の電流がキャパシタを通って両トランジスタのベースに流れ込み、両トランジスタは普通のアンプの状態になります。こうなれる程度にベース電流がないと、つまり電源電圧変化が速くないと、起動できません。
 で、アンプなので両方とも相手から来たのを反転拡大して相手に渡します(コンデンサは変化するものはそれなりに通します)ので、些細な動きが加速的に拡大されて、大きな動き つまりどっちか片方が完全オンで他方が負けて完全オフになります。これが起動です。
 この「些細な動きの急拡大」は反転のたびに起きます。

 抵抗値が 十分に Rc<Rb であることも必要です。
そのわけは、オフ時の Rc充電が終わる前にオンになると コレクタ振幅が小さい。 続くRb充電の時間内に前回よりRc充電が不足だと、次回の振幅がさらに減り、やがて発振が止まってしまうからです。

 なお、「最初の一撃」が無くても立ち上がれる弛張型もあります。


 エレクトロニクス的な解説は検索すれば豊富にありますが不肖私の回答の中から;
↓周波数の詳細を話してたようで。
http://oshiete1.goo.ne.jp/kotaeru.php3?q=692084&rev=1
↓「木を語るのか森を語るのか」
http://oshiete1.goo.ne.jp/kotaeru.php3?q=1386547&rev=1
 
 

 
 
>> コンデンサ電荷の変化らしいのはわかった、 しかし交互というのがいまいち <<


 ↓これですね。
http://www.technologystudent.com/images4/multi2.gif


1.
 ↓弛張(しちょう)発振を理解するときの定番のモデルです。
http://www.suginami.ac.jp/club/pcc/hoshino/img/shishi.GIF
中央で静止しないわけは、流れ出す慣性のために重心移動の変化に即応できず、行き過ぎる(水の捨て過ぎと補充し過ぎ)るからです。チョロチョロ流し込む時間が振動の周期になってます。
これを二つ背中合...続きを読む

Qマルチバイブレーターについて

各マルチバイブレータについての質問で、非安定マルチバイブレータ,単安定マルチバイブレータ,双安定マルチバイブレータはそれぞれ身近なところで、どんなところに使われているのか教えてください。お願いします

Aベストアンサー

[補足要求]「あなたの質問は、『宿題の丸投げ』のようにも見受けられるのですが、違いますよね?」
[この回答への補足]「違います」
……というやりとりが(私の脳内で)行われましたので、ご回答します。

以下、栃木県立栃木工業高等学校電子科のサイトを参考にさせて頂きますと、

・非安定マルチバイブレータ:
  無安定マルチバイブレータとも呼ばれ、方形波パルスの発振器として使われます。例えば自動車のウィンカーの点滅など。

・単安定マルチバイブレータ:
  一安定マルチバイブレータとも呼ばれ、一定幅のパルスを作るのに利用されています。

・双安定マルチバイブレータ:
  フリップフロップとも呼ばれ、コンピュータの記憶回路などに利用されています。

詳しくは
 http://www.tochiko.ed.jp/gakka/D/MULTI.html
をご覧下さい。

なお、質問者さんと全く同じ質問が、例えば
  http://okwave.jp/qa135180.html
で出されていますので(01/09/14)、参考になると思います。検索してみましょう。
また、「マルチバイブレータとは」でネット検索すれば、このQ&Aサイトで質問を立てるよりもずっと早く、より正確で詳しい回答がたくさん見つかると思いますよ。念のため。

[補足要求]「あなたの質問は、『宿題の丸投げ』のようにも見受けられるのですが、違いますよね?」
[この回答への補足]「違います」
……というやりとりが(私の脳内で)行われましたので、ご回答します。

以下、栃木県立栃木工業高等学校電子科のサイトを参考にさせて頂きますと、

・非安定マルチバイブレータ:
  無安定マルチバイブレータとも呼ばれ、方形波パルスの発振器として使われます。例えば自動車のウィンカーの点滅など。

・単安定マルチバイブレータ:
  一安定マルチバイブレー...続きを読む

Qマルチバイブレータのパルスについて

単安定マルチバイブレータ(コレクタ・ベース結合)のパルス式

τ=0.7CR

があります。これの由来?何故この様な式になるのかがわかりません。詳しく教えて頂ければ幸いです。

Aベストアンサー

 
 
 (以下はマルチバイブレータの過去回答からの抜粋改編です。)


 マルチバイブレータの単段。回路的には固定バイアス方式のコンデンサ結合増幅回路ですが、大振幅のスイッチング動作をします。 単安定型では右側トランジスタのコレクタから左側Trのベースに直流的に(単に抵抗で)結ばれます。 無安定型では図と同様のコンデンサとRbによって結ばれます。


      ┯     ┯Vcc
      |     |
      Rc     Rb  
      |     |   C…
      C──C─┴──B
     …B          E
      E           ┷
       ┷

(図が折り返らないように画面幅を広くして見てください。)


..................................................................... Vcc
   ↑
   |
 Vcc-Vbe
   |
   |                Vbe(on)約0.65V
 _↓___          __↓
........↑..........│......................../..................グランド
   |     │      /    ↑
   |     |     /
Vcc-Vce(s) |    / 
   |     | /   Vccに向かって指数変化 
   ↓     |/   時定数τ=CRb





 左側の駆動役のトランジスタのコレクタ波形は、オフではVcc、オンではVces(sは飽和)ゆえ、振幅はVcc-Vcesです。 この振幅がコンデンサを素通り的に渡って右側トランジスタのベースを負に引き下げます。べースは今までオンしていた電圧 Vbe(0.65V程度)であったのが、そこから急激に負に振られます。
その直後からRb経由で充電が始まります。コンデンサの充放電の式は、お馴染みの
  V=Vo・exp(-t/τ)
です。(*)
初期値Voに相当する電圧は、充電の最終到達値はVccなので それとの差を図から読めば簡単です。
  Vo = Vcc-Vbe + Vcc-Vces = 2Vcc-(Vbe+Vces)
です。
右トランジスタのベースが再びオンになる電圧は、これも最終値Vccから測って Vcc-Vbe ゆえ、これらを充放電の式に入れると、
  Vcc-vbe=(2Vcc-Vbe-Vces)・exp(-t/τ)
となります。
この式を満たすtが、トランジスタがオフしてるパルス幅です。それをtwと書くと

  exp(-tw/τ)=(Vcc-Vbe)/(2Vcc-Vbe-Vces)
  tw =τlog{(2Vcc-Vbe-Vces)/(Vcc-Vbe)}
logは自然対数。
単安定の場合はこれがそのまま出力パルスの幅です。
無安定の場合の周波数は
  f=1/(2tw)

 ところでシリコンの小信号Trでは Vbe≒0.65V、Vces≒0.2V 程度です。古風な12V電源とか5V電源の場合はこれらをゼロとした近似式がよく用いられます。すなわち。
  tw≒τlog(2)
  f≒1/( 2τlog(2) )



(*)
これがコツ。
最終状態から測れば、式は常に exp(-t/τ)になるのです。
(1-exp(-t/τ))は使わなくともよいのです。




↓抜粋もと
http://oshiete1.goo.ne.jp/kotaeru.php3?q=692084&rev=1
 
 

 
 
 (以下はマルチバイブレータの過去回答からの抜粋改編です。)


 マルチバイブレータの単段。回路的には固定バイアス方式のコンデンサ結合増幅回路ですが、大振幅のスイッチング動作をします。 単安定型では右側トランジスタのコレクタから左側Trのベースに直流的に(単に抵抗で)結ばれます。 無安定型では図と同様のコンデンサとRbによって結ばれます。


      ┯     ┯Vcc
      |     |
      Rc     Rb  
      |     |   C…
...続きを読む

Q無安定マルチバイブレータにおけるキャパシタの働き

無安定マルチバイブレータは、2つのトランジスタをそれぞれTr1、Tr2とすると、Tr1のベース電圧が正になることでTr1のコレクタ電流が増加し、それによってTr2のベース電圧が0になりTr2がoffになる。(説明がおおざっぱすぎるかもしれませんが)これをTr1とTr2で交互に繰り返すことで発振するものだということはわかっているのですが、2つのキャパシタの働きがいまいちわかりません。

わかる人がいれば、できるだけ詳しく教えていただけるとありがたいです。回答よろしくお願いします。

Aベストアンサー

1,C1に+5V充電されていて、Tr1がONになった瞬間C1の+側が0Vになることで-側が-5Vになる。
Tr1を単なるスイッチにおきかえれば,R1は除去できて,R2とC1が直列になった回路でC1とTr2のベース・エミッタ間(ダイオード)が並列になっているようなものです.
C1は充電されていたのに,いきなり0Vと接続されてしまうのですから,いわばショートされたようなものですね.C1を電池として考えると
C1(+)=>GND=>電池(-)=>電池(+)=>R2=>C1(-)っていう感じの回路になって,これは2つの電池を輪につないで間に10kΩを挟んでいるようなものです.

2,Tr2がOFFになる。
このときTr2のベース電圧は・・っていうと最初は-5Vくらいまで下がりますけど,C1が放電されていくにつれて次第に電圧が上がってきます.
これがリンク先にあるB2-Eが斜めに上昇している部分のうち0Vより下の部分です.
C1が放電されきって端子間の電圧が0Vになっても止まらず,電池からR2を通して逆向きに充電されていきます.(空のコンデンサをR2と直列にして電池とつないだと考えてください)
これがB2-Eが上昇している部分のうち0Vより上側になっている部分です

充電が進むにつれてC1の-側(R2と繋がっている側)の電圧も上昇してTr2のベース電圧もあがってきます.

これでTr2のベースにほんの僅か電流が流れ始めます(完全にONというほどではない).するとトランジスタの増幅作用で大きなコレクタ電流が流れ,C2が放電,Tr1のベース電圧低下で一気にTr1がOFFします.

Tr1がOFFすると,Tr2のベース部分の回路はR1とC1の直列回路とR2が並列になったような状態になります.これでTr2のベース電圧もポン!と跳ね上がります.
これがB2-Eの電圧が斜めに上昇が終わったところにある,線が切れたように見えている部分です.

C1は0.6Vほどですが逆向き充電されているので,電池とC1が直列になったようになって,この瞬間のベース電圧はいつもより高くなりますし,その後もコンデンサが並列になったことで通常より少しベース電流が多めに流れるので,この間VBEも少し大きめになります.
波形を良く見ると線の切れた直後が,少し上から降りてくるような波形になっているのはこのためです.

1,C1に+5V充電されていて、Tr1がONになった瞬間C1の+側が0Vになることで-側が-5Vになる。
Tr1を単なるスイッチにおきかえれば,R1は除去できて,R2とC1が直列になった回路でC1とTr2のベース・エミッタ間(ダイオード)が並列になっているようなものです.
C1は充電されていたのに,いきなり0Vと接続されてしまうのですから,いわばショートされたようなものですね.C1を電池として考えると
C1(+)=>GND=>電池(-)=>電池(+)=>R2=>C1(-)っていう感じの回路になって,これは2つの電池を輪につないで間に10kΩを...続きを読む

Q半減算器と全減算器

全減算器の回路を、2つの半減算器の組み合わせで構成したいのですが、
どうすればいいのでしょうか?

Aベストアンサー

No.1、スペースが消えて何がなんだかわからなくなっていますね。
ほんとにごめんなさい。補足になるかどうか…

半減算器HS1
入力:X1=X,Y1=Y
出力:D1=Ex、B1=~XY

半減算器HS2
入力:X2=Ex、Y2=B0
出力:D2=Ex(10)B0←排他的論理和、B2=~ExB0

となり、全加算器の出力はD=D2、B=~ExB0+~XY

Qマルチバイブレータの周期の測定の計算値との比較

一番簡単な単安定マルチバイブレータの回路で実験をし、単安定マルチバイブレータ(R=68KΩ,C=2.2μF)ではトランジスタのベース・エミッタ電圧、コレクタ・エミッタ電圧の波形を測定したのですが、測定結果はT=75msで、計算値T=0.7CRと値が大幅にずれてしました。これは何故なんでしょうか?実験の行い方が悪かったのでしょうか?また、無安定マルチバイブレータでも、Tが計算値と一致しない現象が起きてしまったのですが、これも単安定マルチバイブレータと同じ理由で値が一致しないのでしょうか?

Aベストアンサー

つーか、温度によって激しく変動もしますよ。無安定よりかは安定すると思いますが
それでもトランジスタを使っている限り、磁気や温度などで変動しますので・・・・

Q時定数について

時定数(τ=CR)について物理的意味とその物理量について調べているのですが、参考書等これといってわかりやすい説明がありません。どうが上記のことについて詳しく説明してもらえないでしょうか?

Aベストアンサー

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さいほど時間がかかります。逆に水槽が大きくても蛇口も大きければ水は短時間で出て行きますし、蛇口が小さくても水槽が小さければこれまたすぐに水槽はからっぽになります。
すなわち水がからっぽになるまでに要する時間の目安として
 水槽の大きさ×蛇口の小ささ
という数字が必然的に出てきます。ご質問の電気回路の場合は
 コンデンサの容量→水槽の大きさ
 抵抗→蛇口の小ささ
に相当するわけで、CとRの積がその系の応答の時間的な目安を与えることはなんとなくお分かり頂けると思います。

数式を使いながらもう少し厳密に考えてみましょう。以下のようにコンデンサCと抵抗Rとからなる回路で入力電圧と出力電圧の関係を調べます。
 + C  -
○─┨┠─┬──●
↑    <  ↑
入    <R  出
力    <  力
○────┴──●

入力電圧をV_i、出力電圧をV_oとします。またキャパシタCに蓄積されている電荷をQとします。
するとまず
V_i = (Q/C) + V_o   (1)
の関係があります。
また電荷Qの時間的変化が電流ですから、抵抗Rの両端の電位差を考えて
(dQ/dt)・R = V_o   (2)
も成立します。
(1)(2)を組み合わせると
V_i = (Q/C) + (dQ/dt)・R   (3)
の微分方程式を得ます。

最も簡単な初期条件として、時刻t<0でV_i = 0、時刻t≧0でV_i = V(定数)となるステップ応答を考えます。コンデンサCは最初は帯電していないとします。
この場合(3)の微分方程式は容易に解かれて
V_o = A exp (-t/CR)   (4)
を得ます。exp(x)はご存じかと思いますがe^xのこと、Aは定数です。解き方が必要なら最後に付けておきましたので参考にして下さい。
Cは最初は電荷を蓄積していないのですから、時刻t=0において
V_i = V = V_o   (5)
という初期条件が課され、定数Aは実はVに等しいことが分かります。これより結局、
V_o = V exp (-t/CR)   (6)
となります。
時間tの分母にCRが入っているわけで、それが時間的尺度となることはお分かり頂けると思います。物理量として時間の次元を持つことも自明でしょう。CとRの積が時間の次元を持ってしまうのは確かに不思議ではありますが。
(6)をグラフにすると下記の通りです。時刻t=CRで、V_oはV/e ≒0.368....Vになります。

V_o

* ←初期値 V        
│*
│ *
│   *         最後は0に漸近する
│      *       ↓
└───┼──────*───*───*───*─→t
t=0  t=CR
   (初期値の1/e≒0.368...倍になったタイミング)


【(1)(2)の解き方】
(1)の両辺を時間tで微分する。V_iは一定(定数V)としたので
0 = (1/C)(dQ/dt) + (dV_o/dt)
(2)を代入して
0 = (1/CR) V_o + (dV_o/dt)
-(1/CR) V_o = (dV_o/dt)
- dt = dV_o (CR/V_o)
t = -CR ln|V_o| + A
ここにlnは自然対数、Aは定数である。
この式は新たな定数A'を用いて
V_o = A' exp (-t/CR)
と表せる。

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さい...続きを読む

QCR発振の原理

トランジスタのCR発振の原理について説明が出来る方、おおまかでもよろしいのでお願いします。

Aベストアンサー

No.2のymmasayanです。補足です。
移相回路で180度遅らせると書きましたが、参考URLの場合は180度進ませるです。
(移相回路がCRの接続の仕方で2種類あります)
進みでも遅れでも180度で反転ですので結局は同じことなのですが。

QマルチバイブレータのV-f特性

無安定マルチバイブレータの実験をしました。
電源電圧を0から15Vまで変化させて、周期をオシロスコープで測定しました。その周期から周波数を計算して、横軸に電圧、縦軸に周波数をとってグラフ化しました。
f  |
40 |        ・
   |       ・
   |      ・
30 |   ・・・
   |  ・
   | ・          f=kHz 
20 |・
   L―――――――――
    1  6   12 V
こんなグラフになりました。30kHzの回路を作成したので6~10Vの時は30kHzに近い値になりましたが、1~6Vと10~15Vは右上がりになりました。
なぜ、このようなグラフになるのでしょうか?
おしえてください。よろしくお願いいます。

Aベストアンサー

詳しい図をどうもありがとう。
しかしとても古いトランジスタを使ってるのだな。ずいぶん前に製造中止になった製品でデータシートが無かった。


............................................................................. Vcc
   ↑
   |
 Vcc-Vbe
   |
   |                Vbe(on)約0.65V
 _↓___          __↓___
........↑..........│......................../............................ gnd
   |     │      /    ↑
   |     |     /
Vcc-Vce(s) |    / 
   |     | /   Vccに向かって指数変化 
   ↓     |/   時定数τ=CbRb
                   =470p×51k=23.97μs


トランジスタのコレクタ電位は(gndから測って)オフ状態ではVccでオンすると飽和電圧Vces(sは飽和)になるゆえ、その振幅はVcc-Vces。この振幅がコンデンサを渡って反対側のベースを負に振る(上図)。ベースの電位は今までオンしてたから Vbe(0.65V程度)であった。そこから急激に負に振られる。その直後からRb経由で充電が始まる。


充放電の一般式はお馴染みの V=Vo・exp(-t/τ) である。
Voは一見複雑に見えると思うが、充電の最終到達値はVccである。そこを基準にVoやVを測れば簡単明瞭である。(*)
上図から
Vo = Vcc-Vbe + Vcc-Vces = 2Vcc-(Vbe+Vces) である。
これが再びトランジスタをオンさせる所は、やはりVccから
測ってVcc-Vbeになる所である。
ゆえに、充放電の一般式から
Vcc-vbe=(2Vcc-Vbe-Vces)・exp(-t/τ)
を満たすtがパルスの幅になる。
exp(-t/τ)=Vcc-Vbe/(2Vcc-Vbe-Vces)
-t/τ=ln{Vcc-Vbe/(2Vcc-Vbe-Vces)}
周波数は1/2tゆえ
f=1/(2τ)・1/ln{(2Vcc-Vbe-Vces)/(Vcc-Vbe)}

ところで、シリコンTrでは、コレクタ電流を数ミリ流した場合は、およそVbe=0.65V、Vces=0.2V程度である。だいたい決まってる。
そこで数値計算;

Vcc   f=1/47.94μs・1/ln{(2Vcc-0.85)/(Vcc-0.65)}

15(Volt)  29.43 (kHz)
14     29.39
13     29.33
12     29.27
11     29.19

10     29.10
9      28.98
8      28.84
7      28.65
6      28.41

5      28.05
4      27.51
3      26.59
2      24.62

1.5     22.48
1.3     21.06
1.2     20.13
1.1     18.98
1.0     17.53

単純化した計算なので実測値とはズレがあるが傾向は同じはず。
下の方の落ちかたは;直線ではなく電圧が低い所が急激に落ちてるのでは? もし違う場合は実測値を教えて下さい。別の原因が隠れているかも。まさかトランジスタが永年の酷使で劣化してるのか?など。

上の方が上昇する様子からして、エミッタベース逆耐圧Veboは実力10V程度ありそうだ。図の Vcc-Vce(s) がこのVeboで押さえられて一定値になる、という式を作り直して実測値と比べることを勧める。



(*)
複雑な回路の場合これがコツ。
最終状態から測れば式は常に exp(-t/τ)になる。
(1-exp(-t/τ))は使わなくともよい。

詳しい図をどうもありがとう。
しかしとても古いトランジスタを使ってるのだな。ずいぶん前に製造中止になった製品でデータシートが無かった。


............................................................................. Vcc
   ↑
   |
 Vcc-Vbe
   |
   |                Vbe(on)約0.65V
 _↓___          __↓___
........↑..........│......................../............................ gnd
   |     │      /   ...続きを読む

Q無安定マルチバイブレータ

非安定マルチバイブレータについて勉強中なのですが、これはコンデンサの特徴だと思うのですが、コンデンサが充電された状態で、+側の電圧が0になったとき、ベース電圧がマイナスの電位から始まるのはなぜですか?それと、このLED点滅回路の仕組みを初心者に分かりやすく教えてください。

回路は↓のような感じです。
http://www.cqpub.co.jp/hanbai/PDF/34481/3448_8syo.pdf


本当に困っています。よろしくお願いします。

Aベストアンサー

 
 
>> -5Vから充電されてスレッシュホールド電圧の0.7Vになったら、相手のトランジスタがONになるということでいいのでしょうか?これだと、ー5Vになる=放電であるということになると思うのですが <<

 帰ったら素早いレスが付いてて驚きました!(数日放置が普通なのでw )
コンデンサの両端電圧に着目して語ると、おっしゃる通り -5V から 0V まで「放電」してから引き続き +0.7V に「充電」され、反転過程では保存され、反転後はコレクタ抵抗経由で充電され…となります。
 一方、「回路の振る舞い」を話すとき、電圧が(1-exp(-t/τ)的に上がる波形や操作を「充電」、exp(t/τ)的に下がる波形や操作を「放電」と形容することが少なくありません。(充放電とはコンデンサの事だと決めてしまうと conflict するでしょうが。) お示しのpdfの文もこの用法で「充電」と書いてたので私もすんなり書きました、通じてなかったらご免なさいです。今後この分野の資料を読むときの参考にしてください。(専門用語は専門的になるほど素朴な意味から拡張=別な意味や逆の意味をも吸収合併=することが多いです。 数学で引き算を途中から「負の数を足す」と言うようにですね。)
 
 

 
 
>> -5Vから充電されてスレッシュホールド電圧の0.7Vになったら、相手のトランジスタがONになるということでいいのでしょうか?これだと、ー5Vになる=放電であるということになると思うのですが <<

 帰ったら素早いレスが付いてて驚きました!(数日放置が普通なのでw )
コンデンサの両端電圧に着目して語ると、おっしゃる通り -5V から 0V まで「放電」してから引き続き +0.7V に「充電」され、反転過程では保存され、反転後はコレクタ抵抗経由で充電され…となります。
 一方、「回...続きを読む


人気Q&Aランキング