痔になりやすい生活習慣とは?

以下が教えていただきたい問題です。

集合Xの濃度を#Xで表す.特に,#φ= 0 であり,#{φ} = 1 である

更に,濃度のべき乗(冪乗) (#Y)^(#X) を #(Y^X) と定義する

(1) (#Y)^0 を求めよ

(2) 0^(#X) を求めよ

(3) 0^0 を求めよ

(要証明)


濃度のべき乗の定義を調べたところ、濃度α,β(ただしα≧1,β≧1) に対して

α= #A, β= #B となる集合 A, B をとり

AからBへの写像全部の集合 B^A の濃度を冪β^αとする


となっていて濃度が 0 のときの場合について触れている本も無く困ってます

なんとなく (1)~(3) の答はどれも 0?

ヒントだけでいいのでよろしくお願いします。

A 回答 (3件)

問題は(要証明)までで、後はあなたが調べたことですね。


(1)
問題の定義より
(#Y)^0=(#Y)^(#φ)=#(Y^φ)
までは良いですね。
さて、Y^φはどう考えましょう。問題の中では冪集合の定義がありませんし、あなたの調べた中にも空集合の冪集合の定義はありません。
普通に考えれば、Y^φは、φからYへの写像全体です。空集合からの写像というのも分かり難い概念ですが、集合論的には空集合になる写像がありますので
Y^φ={φ}
従って
(#Y)^0=#{φ}=1

(2)
0^(#X)=(#φ)^(#X)=#(φ^X)
Xが空集合でないとき、Xから空集合への写像は存在しないので
φ^X=φ
従って
0^(#X)=#φ=0
Xが空集合のときは(3)です。

(3)
0^0=(#φ)^(#φ)=#(φ^φ)
(1)と同じようにして
φ^φ={φ}
従って
0^0=#{φ}=1
    • good
    • 0
この回答へのお礼

空集合から、空集合へ、の写像が全く分かっていないと痛感しました。
その辺の抜けを埋めていきたいです。

多分rinkunさんに答えてもらうのは今回で3,4回になるかと思いますが、
毎回とても助かってます。いつも解答ありがとうございます。m(_ _)m

お礼日時:2009/12/21 00:43

>すいません、分かりません。



おおよそ合っています。

注意するべきは濃度 α を与える集合 A は無数に考えられるので、
α = #A , β = #B なる A, B をどのようにとっても #(A^B) の濃度が同じでないと
α^β を「定義した」ことにならないということです。

これを踏まえた上で、(#Y)^0 を考えるときに、#(Y)^(#φ) つまり #(Y^φ) を考えればよい。と言えます。

この回答への補足

なるほど。もしよければ
#X = 0 ならば X = φ であることの証明
も教えてもらえませんか?、気になるので…

補足日時:2009/12/24 23:29
    • good
    • 0

>更に,濃度のべき乗(冪乗) (#Y)^(#X) を #(Y^X) と定義する



まずは、その「定義」が well-defined であることを示して補足にどうぞ。
次に #X = 0 ならば X = φ であることを証明して補足にどうぞ。

この回答への補足

どうすればいいのか、、、

A, B と同じようにα= #A', β= #B' となる集合 A', B' をとると

#A= #A', #B= #B' であるから

全単射 f:A->A', g:B->B' が存在する

B^A の各元 h に B'^A' の元 g・h・f を対応させれば

全単射 B^A->B'^A' がつくれる

よって, #B^A=#B'^A' ??

すいません、分かりません。

補足日時:2009/12/20 23:59
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q同型とは?

複素解析の本に
『複素数からその共役にうつる演算は体Cの1つの自己同型である』
とか
『体Cの同型で部分体Rの元を動かさないものはα→α(つまりなにも動かさぬ同型)とこの共役に限る』
とあるんですが、『同型』という言葉の定義について何も書いてありません。

同型とはなんですか?

Aベストアンサー

2つの体KとLが同型というのは、
KとLが同じ構造をしている
ということで、ぶっちゃけた話
KとLは同じものだと思ってもさしつかえないよ
ということです。
(これは私の同型というものに対するイメージです。)

厳密には、
2つの体KとLが同型というのは、KからLへの同型写像がある
というもので、同型写像とは
全単射な準同型写像
のことです。
KからLへの準同型写像とは
任意のa,b∈Kに対し f(a+b)=f(a)+f(b),f(ab)=f(a)f(b)
を満たすKからLへの写像(関数)fのことです。

例を1つ。
R^2={(x,y)| x,yは実数}と複素数体Cは同型です。
R^2からCへの写像fを
f(x,y)=x+iy (iは虚数単位)
と定めるとfは同型写像になるからです。
R^2とCは同型なのですから
R^2とCはほとんど同じものだと考えてよいことになります。

また、自分から自分への(つまりCからCとか)の同型写像を
自己同型写像、あるいは略して自己同型といいます。
f(x+iy)=x-iy というある複素数をその共役に写すという写像fは
自己同型写像になりますよ、というのが
>『複素数からその共役にうつる演算は体Cの1つの自己同型である』
の述べていることです。

詳しく知りたいのでしたら代数学の本をひもとく必要がありますが、
そこを理解しないと先へ進めないということもないでしょうから、
(というのは質問にある『体Cの同型でうんぬんなんてのは
複素解析を学ぶ上でははっきり言ってどうでもいいことだからです)
頭の片隅にでも残しておいて飛ばしてもいいと思いますよ。

2つの体KとLが同型というのは、
KとLが同じ構造をしている
ということで、ぶっちゃけた話
KとLは同じものだと思ってもさしつかえないよ
ということです。
(これは私の同型というものに対するイメージです。)

厳密には、
2つの体KとLが同型というのは、KからLへの同型写像がある
というもので、同型写像とは
全単射な準同型写像
のことです。
KからLへの準同型写像とは
任意のa,b∈Kに対し f(a+b)=f(a)+f(b),f(ab)=f(a)f(b)
を満たすKからLへの写像(関数)fのことです。

例を...続きを読む

Q一様連続でないの厳密な証明は?

微分積分の期末テストで次の問題が出ました。

次の命題の正誤を答えよ。ただし理由も与えること。

命題:関数f(x)=x^ 2は区間[0,∞)で一様連続である。

この問題で自分は次のように解答しました。

(証)αを与えられた区間内の任意の要素とし、εを任意の整数とする。

あるδとしてmin.(ε/2|α|+1,1)とする。

このとき|x-α|<δ⇒|f(x)-f(α)|=|x^2-α^2|=|xーα|・|x+

α|<・・・・・(略)<δ(2|α|+1)<ε

となり、故にf(x)=x^2は区間[0,∞)で一様連続でない。(なぜなら、δがε

だけでなくαにも依存するから)

この解答で一応マルはもらえたのですが、はじめにδを上のようにしたものだけを考

えていい理由は何なんですかね?もしかしたらεだけでδを表せるかもしれないの

に。考えてはみてるんですがなかなか納得のいく答えが見つかりません。よかった

ら力になってください。よろいくお願いします。

Aベストアンサー

ikecchiさんご自身で疑問を感じるのは当然で、ikecchiさんの解答は実は
「関数f(x)=x^ 2は区間[0,∞)で連続である」
ことの証明にはなっていますが
「関数f(x)=x^ 2は区間[0,∞)で一様連続でない」
ことの証明にはなっていません。その理由はご自身で書かれている通り
「ある」δについてαに依存することを証明しても、「任意の」δがαに依存する
ことは証明されないからです


「一様連続でない」ということを証明するには何を示せば良いのでしょうか。
変数の任意性や依存関係が絡み合うこの種の問題(ε-δの応用問題は大体そうです)
を考える時は命題を論理式で書いておくと証明すべきことが見やすくなります。
まず「関数f(x)が区間[a,b)で連続である」を論理式で書くと
∀ε>0 ∀α∈[a,b) ∃δ>0  ∀x(|x - α| < δ ⇒ |f(x) - f(α)| < ε)
でしたね。つまりこの場合δはεとαの両方に依存しても構わない。
一方「関数f(x)が区間[a,b)で一様連続である」を論理式で書くと
∀ε>0 ∃δ>0 ∀α∈[a,b) ∀x(|x - α| < δ ⇒ |f(x) - f(α)| < ε)……(1)
となります。変数δとαに関する記述の位置が入れ替わっていることに注意して下さい。
この場合δはεだけに依存します。
そして「関数f(x)が区間[a,b)で一様連続でない」という命題はこれの否定命題ですから
∃ε>0 ∀δ>0 ∃α∈[a,b) ∃x(|x - α| < δ かつ |f(x) - f(α)| ≧ ε)……(2)
となります。(論理式の変形規則についてはご存知でしょうね)

つまり「関数f(x)=x^ 2は区間[0,∞)で一様連続でない」
ことを証明するためには,具体的なεと任意のδをとってきてそのε,δの組に
対して(2)式の括弧内の条件を満たすようなα,xがとれることを示せば良いのです。
これを示しましょう。

ε=1/2とし,任意のδを1つ固定し, α≧ 1/(2δ) とします。
x= α+(δ/2) とするとxは(1)式の前提条件
|x - α| < δ を満たします。しかし
|f(x) - f(α)|= |x^2 - α^2| = | (α+(δ/2))^2 - α^2 |= | αδ + δ^2/4 |≧ 1/2 =ε
ですから一様連続でないことがいえました。          ■

証明が間違っているにも関わらず先生が○をくれた理由は推測するしかありませんが
(1)一応「一様連続でない」という結論はあっているので、
証明も正しいものと勘違いした
(2)実は先生もわかってない(まさかね^^;)
(3)一応「一様連続でない」という結論はあっていることと
証明を読んで(間違いではあるものの)一様連続性についても
一応は理解しているものと判断して○にした。

というところが考えられますが本当のところ先生に聞いてみた方が良いでしょうね。

ikecchiさんご自身で疑問を感じるのは当然で、ikecchiさんの解答は実は
「関数f(x)=x^ 2は区間[0,∞)で連続である」
ことの証明にはなっていますが
「関数f(x)=x^ 2は区間[0,∞)で一様連続でない」
ことの証明にはなっていません。その理由はご自身で書かれている通り
「ある」δについてαに依存することを証明しても、「任意の」δがαに依存する
ことは証明されないからです


「一様連続でない」ということを証明するには何を示せば良いのでしょうか。
変数の任意性や依存関係が絡み合うこの種の...続きを読む

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Q空集合のべき集合

空集合のべき集合が空集合であることを証明したいのですが、
こういうあたりまえって思える証明はやっぱり背理法を用いるのでしょうか?

Aベストアンサー

空集合のべき集合は空集合ではなくて,
空集合を要素に持つような集合
{Φ}
を1つ持つのだと思いますが,違うのでしょうか?
一般にn個の要素を持つ集合の冪集合の要素の個数は2^nですが,
n=0のとき,すなわち空のときは,2^0=1で,1つの要素を持つとしてつじつまもあいますし.

Q最大元と極大元の定義の違いが分かりません

数学の基礎「齋藤正彦著」p22からの抜粋です。

定義
(X,≦)を順序集合,AをXの部分集合とする。
「1) aがAの元でAの全ての元xに対してx≦aが成り立つ時,aをAの最大元といい,maxAと書く,Aの全ての元xに対してa≦xが成り立つ時,aをAの最小元といい,minAと書く。最大元や最小元は存在するとは限らない,あるとすれば一つしかない。
2) aがAの元で,Aのいかなる元xに対してもa<xとならない時,aを極大元という。x<aなるAの元が存在しない時,aを極小元という。極大元や極小元は存在しない事も有るし,沢山存在する事もある」

と定義が紹介されてるのですが最大元と極大元についてのこの文意
"aがAの元でAの全ての元xに対してx≦aが成り立つ"と"aがAの元で,Aのいかなる元xに対してもa<xとならない"
とは同値だと思います。
違いが分かりません。

一体,どのように違うのでしょうか?

Aベストアンサー

>最大元と極大元の定義の違いが分かりません
最大元と極大元は抽象的に考えても違いが分からなくて当然だと思います。ここは具体例で理解するのがよいと思います。

例はいろいろ考えられますが、たとえば、(x,y)∈R^2について、
(x1,y1)≦(x2,y2)をx1≦x2かつy1≦y2と定義します。
A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}
のとき、Aの最大元は存在しませんが、極大元は3個あります。ちなみに最小限は(0,0)の1個ですね。

ところで、最大元が存在する場合は、全順序集合、半順序集合に関係なく、それは極大元でもあります。しかし、その逆は成り立ちません。
その意味で、「同値」ではありませんね。


人気Q&Aランキング