aを正の実数とする(a>0)
x=1/2*(a+(1/a)) えー+えーぶんのいち の時、 つまりx=(a^2+1)/2aの時、
(√x-1)/((√x+1)-(√x-1))の値を求めよ。 ←カッコの中は全てルートに入っています。

√x+1=√(a+1)^2/2a=|a+1|/√2a
√x-1=√(a-1)^2/2a=|a-1|/√2a

a>0なので、
|a+1|=a+1
|a-1|= a-1 (a-1≧0),
-(a-1) (a-1<0)

だそうですが、
(1) |a+1|の時も、a+1と-(a+1)を考えると思ったのですが,そうない理由はなんですか?
(2) また、a-1の時、aがどんな数でも、a>0なのでゼロにはなってもマイナスにはならないと思うのですが、なぜa-1がマイナスの時を考えるのですか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

>(1) |a+1|の時も、a+1と-(a+1)を考えると思ったのですが,そうない理由はなんですか?


>(2) また、a-1の時、aがどんな数でも、a>0なのでゼロにはなってもマイナスにはならないと思うのですが、なぜa-1がマイナスの時を考えるのですか?

 (1)と(2)を逆に考えていませんか?


(1) a>0 なので、a+1>1>0
   ∴ |a+1|=a+1

(2) a=1/2 の時を考えると、  a-1=1/2-1=-1/2 <0
 また、a=2 のときを考えると、   a-1=2-1=1 >0

と、aの値によって符号が異なるので、0<a<1 と 1≦a で場合分けが必要になります。
    • good
    • 0
この回答へのお礼

ありがとうございます

お礼日時:2010/01/21 09:29

>(1) |a+1|の時も、a+1と-(a+1)を考えると思ったのですが,そうない理由はなんですか?



a が正数だから

>(2) また、a-1の時、aがどんな数でも、a>0なのでゼロにはなってもマイナスにはならないと思うのですが、

よく考えましょう。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Qx^2+2ax-a^2=0 これを解くとx=-1-√2aと-1+√2a

x^2+2ax-a^2=0 これを解くとx=-1-√2aと-1+√2aになるみたいです。どういうふうに考えたら、この答えになるんですかね?ちなみにa>0です。

Aベストアンサー

x^2+2ax-a^2=0
x^2+2ax=a^2
x^2+2ax+a^2=2a^2
(x+a)^2 = 2a^2
x+a = ±(√2)a
x=-a±(√2)a

だと思いますけど。その答が間違っているのでは?

Qある積分の問題。∫1/√(x^2+A) = log|x+√(x^2+A)|

ある演習問題で
∫1/√(x^2+A)
という形が出てきて、それが解けずに解答を見たら、
∫1/√(x^2+A) = log|x+√(x^2+A)|
という記述で、この積分の問題は済まされていました。逆算すると、確かにそうなるのですが、なかなかこの形を直接考え出すのは、難しい気がします。…ので、単純な暗記になると思うのですが、覚えにくい形ですよね…。
何か右辺を導き出すような考えの手順のようなものはあるでしょうか?

よろしくお願いします。

Aベストアンサー

高校範囲だと、#1の方のように、
t = x+√(x^2+A)
という置換を覚えるものです。

∫1/(1+x^2)dx という形をみたら、x=tan(t) と置く、ていうのと同じ感じで、
∫1/√(1+x^2)dx という形をみたら、t=x+√(1+x^2) と置くものなんです。
この積分は、けっこうよく出てくるので、覚えておいて損はないです。

大学生であれば、#2の方のように、x=sinh(t) と置換するってのが常道でしょうけど。

Qcosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 +

cosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 + {(x-π/4)^3/3!}・sin(θx)  
(0<θ<1)

f(x) = (4/π^2)・{2(x-π/4)(x-π/2)-√2・x(x-π/2)}
このグラフが分かりません…
教えてください!

Aベストアンサー

+ {(x-π/4)^3/3!}・sin(θx) は
+ {(x-π/4)^3/3!}・cos(θ(x-π/4)) ではないかと...違うかな?

で、これは cosx そのものです。θは x の関数なのでそれに惑わされないように。


下のはそれでなく、f(x)=(8/π^2){ (x-π/4)(x-π/2) - √2 x(x-π/2) } が正しいと思います・・・
このグラフは添付した図になります。
かなり近いです。

描き方は、計算機を用意して頂点を数値計算、あとは (0, 1) 、(π/4, 1/√2) 、(π/2, 0) を通るように二次関数のグラフを描けば良いです。
あるいはグラフ描画ソフトの力を借ります。


人気Q&Aランキング

おすすめ情報