【最大10000ポイント】当たる!!質問投稿キャンペーン!

複素関数論の演習書

複素関数を大学時代にほとんど理解できずに終わってしまいました。
数年ぶりに、趣味で勉強を再開します。

「問題」と「答案」が省略がほとんどなく、きちんと書いてあるある本がいいです。
独学できて、教師の説明が不要な本。

巻末の解答欄を見て、省略されている本はがっかりします。

「複素関数 演習」で検索したところ次がでましたが、
ほかになにかお勧めの書籍があれば教えてください。
http://www.amazon.co.jp/%E8%A4%87%E7%B4%A0%E9%96 …

その他、離散数学、記号論理、微積分などに関しても、
「問題」「解答」が省略なく書いてある本をご紹介いただければ助かります。

A 回答 (1件)

複素関数論ってのは


大学のある意味「専門課程」の科目だから
大学入試の参考書のような手取り足取りなんてものは
まずありません.
離散数学・記号論理についてもほぼ同様.
市場経済ですから,市場が小さいものにお金をかけて
わざわざつくることはないということと
大学生や大人だったら自分でやらんかい!
という意味もあるのでしょう.

とはいえ・・皆無というわけではなく
サイエンス社の「黄色い問題集」はチェックしてますか
「演習 関数論」ってタイトル.
この黄色いシリーズは比較的大学入試問題集っぽいつくり.

微分積分だけは市場が大きいので
かなりいろいろな本がでているので
大き目の本屋で物色しましょう.

>巻末の解答欄を見て、省略されている本はがっかりします。
ぶっちゃけ「あるだけまし」なんです.
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q物理を勉強するための複素関数論

現在物理学科の2年生です。
複素関数論の授業が始まるのですが教科書の指定はありません。
物理をするうえで必要な複素関数論の勉強をするうえで適している参考書について知りたいです。
数学科の人だけが使うようなものすごく深い内容のものでなくてもかまいません。
量子力学、流体力学などを学ぶ上で必要なレベルの本が知りたいです。
現在、
神保道夫さんの複素関数入門を持っていますが苦戦してます・・・
この本は数学科の人用に作られていると聞きました。
物理を学ぶ学生はこの位の本をやっておくべきでしょうか?
またこの本以外でおすすめの参考書があれば教えてください。

Aベストアンサー

添付URLを見てください。
物理屋さんが書いた複素関数入門です。

写像などの数学的なことは最小限で物理科の自分にはとてもあっていました。

この本は複素数は2次元ベクトルで、複素関数は2次元のベクトル解析だ
という考え方で進みます。
当然ながら流体力学への応用も入っていてお得です。

参考URL:http://www.amazon.co.jp/複素解析と流体力学-今井-功/dp/4535606013

Q大学一般教養数学レベルの複素数関連のおすすめの本は?

 タイトルの通りです。物理学の勉強と並行して、その基礎となる複素数の知識を身に着けたいのですが、おすすめの本を推奨していただけないでしょうか。よろしくお願い致します。
(例)著者名、「本の題名」、発行所(出版社)等

Aベストアンサー

高木貞治 解析概論 岩波書店
http://www.amazon.co.jp/%E8%A7%A3%E6%9E%90%E6%A6%82%E8%AB%96-%E6%94%B9%E8%A8%82%E7%AC%AC3%E7%89%88-%E8%BB%BD%E8%A3%85%E7%89%88-%E9%AB%98%E6%9C%A8-%E8%B2%9E%E6%B2%BB/dp/4000051717

この本は複素解析(複素数の関数の微分積分)のためにこそある名著です。
そして、数多くの物理学の教科書でこの解析概論が参考書として挙げられています。
物理学を勉強するために、この本は是非とも揃えなければなりません(笑)。

フーリエ級数などは弱いですけれど、この本一冊あれば、物理で使う解析学の部分は足りるんじゃないかな。
微分方程式について触れられていないので、この部分は他の本で補わないといけませんけれど。

実関数の微分積分、複素解析、簡単にですがフーリエ級数・フーリエ解析、さらにルベーグ積分について書かれていますので、非常に重宝する本です。
持っていて損になる本では決してありません。


今吉洋一 複素関数概説 サイエンス社
http://www.saiensu.co.jp/?page=book_details&ISBN=ISBN4-7819-0847-0
みたいのでもいいんじゃないですか。

私は、この本を持っていませんけれども、
サイエンス社の数学の本は、どれも優しく丁寧に書いてあるので、
独学者にはもってこいの本なんですよ。
サイエンス社の教科書は、字が大きくて読みやすい上に、ページ数も多くなく、さらにお値段も手頃なんですよ(ポリポリ)。
数学が得意な人は「これでは全然物足りない」と感じさせるんですけれど。

高木貞治 解析概論 岩波書店
http://www.amazon.co.jp/%E8%A7%A3%E6%9E%90%E6%A6%82%E8%AB%96-%E6%94%B9%E8%A8%82%E7%AC%AC3%E7%89%88-%E8%BB%BD%E8%A3%85%E7%89%88-%E9%AB%98%E6%9C%A8-%E8%B2%9E%E6%B2%BB/dp/4000051717

この本は複素解析(複素数の関数の微分積分)のためにこそある名著です。
そして、数多くの物理学の教科書でこの解析概論が参考書として挙げられています。
物理学を勉強するために、この本は是非とも揃えなければなりません(笑)。

フーリエ級数などは弱いですけれど、この本一...続きを読む

Q演習書(線形代数あるいは微分積分)で回答が丁寧でわかり易いものを教えて下さい。

演習書(線形代数あるいは微分積分)で回答が丁寧でわかり易いものを教えて下さい。宜しくお願いします。

Aベストアンサー

私は数学専攻の四回生のものです。

私が主に用いたのは
共立出版
「明解演習 線形代数」「明解演習 微分積分」
小寺平治 著

です。高校のとき使ったニューアクションや青チャートのような構成になっていてわかりやすかったです。

持っていないのですが、サイエンス社の「演習と応用シリーズ」も丁寧だったと思います。

あと培風館の「詳説演習シリーズ」も少し難しいですが評判はなかなかいいみたいです。

線形代数・微分積分の場合、純粋数学の人間が使う本と工学系や物理学系の人間が使う本とで微妙に書かれている内容が違うことがありますので気をつけて下さい。自分の方面に合った本を選ぶことがベストだと思います。図書館や書店でいろいろさがしてみてください。

2ちゃんねるのまとめページですがここも参考にしてみてください。
http://www.geocities.co.jp/Technopolis-Mars/7997/

大学院の入試参考書サイトもよろしければ
http://www.initialize.co.jp/ae/books.php

それではがんばってください。

参考URL:http://www.geocities.co.jp/Technopolis-Mars/7997/

私は数学専攻の四回生のものです。

私が主に用いたのは
共立出版
「明解演習 線形代数」「明解演習 微分積分」
小寺平治 著

です。高校のとき使ったニューアクションや青チャートのような構成になっていてわかりやすかったです。

持っていないのですが、サイエンス社の「演習と応用シリーズ」も丁寧だったと思います。

あと培風館の「詳説演習シリーズ」も少し難しいですが評判はなかなかいいみたいです。

線形代数・微分積分の場合、純粋数学の人間が使う本と工学系や物理学系の人間が使う本...続きを読む

Qはじめて位相空間を勉強するのに最もわかりやすい本もしくはサイトを教えてください。

位相空間を勉強しようと思うのですが、まったくわかりません。
ウィキペディア等みても理解できないレベルです。
わかりやすい本、サイト等あれば教えてください。

Aベストアンサー

http://www.math.sci.hokudai.ac.jp/student/kei.html.ja

北大数学科の推薦図書ガイドです.
学部学生への書籍ガイドとしてきちんと考えて
推薦されてますし,名著ぞろいです.
ただし,このガイドの中の「位相空間」のところ
I. M. シンガー & J. A. ソープ「トポロジーと幾何学入門」培風館
これは名著なのは間違いない(実際,とても奥深く面白い)ですが,
初学者には読み通すのはかなり難解だと思います.

推薦ガイドとは別に,個人的に読んだ書籍でお勧めできるものを
易しい順に
・志賀浩二の30講シリーズ『位相への30講』(朝倉)
・松坂和夫『集合・位相入門』(岩波)
・森田紀一『位相空間論』(岩波)

・位相への30講
超初心者向け.
30講シリーズの特徴である,
「内容は少ないが説明が具体的」なのはそのまま.
位相空間が「近さの一般化」であることを強調しており,
寝転んで流し読みすることもできるくらいの平易さだが
感覚的な理解が期待できる.

・集合・位相入門
分厚いがそれは著述が異常なほど丁寧なため.
独習用の教科書として一押し(Amazonのレビューなど参照).
例題や演習問題をすべてこなせば,
初歩の集合論・位相空間論はまずクリアできるのではないかと思う.
学部で履修する程度の内容はほぼすべて含まれている.
この著者の岩波からでている一連の書籍群はどれも定評があり
確かに面白い良書が多い.

・位相空間論
岩波全書なので,上記二冊に比べれば専門的な書籍.
内容そのもののレベルは大学院修士課程程度までか.
修士の学生でこの本にでていることを
知らないのはかなり問題だと思う.
位相空間の分離公理などが詳しくでている.
初歩をマスターした段階で読むべき書籍.
平易な書籍ではないが,簡潔にして的を得た内容がぎっしり.
著者は特性類の専門家であり,その方面の大家である.
残念ながら出版社品切れ・重版未定.
図書館で借りるしかないが数学科図書館であれば
まず間違いなく所有しているくらいの名著.

#岩波全書のいい本って今では「重版未定」が多いのが残念

http://www.math.sci.hokudai.ac.jp/student/kei.html.ja

北大数学科の推薦図書ガイドです.
学部学生への書籍ガイドとしてきちんと考えて
推薦されてますし,名著ぞろいです.
ただし,このガイドの中の「位相空間」のところ
I. M. シンガー & J. A. ソープ「トポロジーと幾何学入門」培風館
これは名著なのは間違いない(実際,とても奥深く面白い)ですが,
初学者には読み通すのはかなり難解だと思います.

推薦ガイドとは別に,個人的に読んだ書籍でお勧めできるものを
易しい順に
・志賀浩二...続きを読む

Qオススメの線形代数の問題演習を教えてください!

よくわかる線形代数と、
やさしく学べる線形代数を独習しました。

次に、問題集に取り組みたいのですが、
オススメの線形代数の問題集を教えてください。

いまのところ、
基本演習 線形代数 (基本演習ライブラリ) - 寺田 文行, 木村 宣昭
にしようかと思っています。
よろしくお願いいたします。

Aベストアンサー

理学部でしたか。それならば、演習書ではないですが、こちらを
お勧めします。(ご存知かもしれませんが、、)
斉藤正彦さんの名著です。
http://www.amazon.co.jp/%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%85%A5%E9%96%80-%E5%9F%BA%E7%A4%8E%E6%95%B0%E5%AD%A6-1-%E9%BD%8B%E8%97%A4-%E6%AD%A3%E5%BD%A6/dp/4130620010/ref=sr_1_1?ie=UTF8&s=books&qid=1239847081&sr=8-1
沢山実践的な演習をこなしたいなら、こちらがお勧めです。
こちらは、図書館から借りて使用しました。解説が詳しく、かつ
良問が揃っているので、理解力、応用力がつくと思います。
サイエンス社
http://www.amazon.co.jp/%E6%BC%94%E7%BF%92%E5%A4%A7%E5%AD%A6%E9%99%A2%E5%85%A5%E8%A9%A6%E5%95%8F%E9%A1%8C%E3%80%88%E6%95%B0%E5%AD%A6%E3%80%89I-%E5%A7%AB%E9%87%8E-%E4%BF%8A%E4%B8%80/dp/4781908373/ref=sr_1_1?ie=UTF8&s=books&qid=1239847242&sr=1-1
東京図書
http://www.amazon.co.jp/%E8%A9%B3%E8%A7%A3-%E5%A4%A7%E5%AD%A6%E9%99%A2%E3%81%B8%E3%81%AE%E6%95%B0%E5%AD%A6%E2%80%95%E7%90%86%E5%AD%A6%E5%B7%A5%E5%AD%A6%E7%B3%BB%E5%85%A5%E8%A9%A6%E5%95%8F%E9%A1%8C%E9%9B%86-%E6%9D%B1%E4%BA%AC%E5%9B%B3%E6%9B%B8%E7%B7%A8%E9%9B%86%E9%83%A8/dp/4489003897/ref=sr_1_2?ie=UTF8&s=books&qid=1239847309&sr=1-2
参考までに、

理学部でしたか。それならば、演習書ではないですが、こちらを
お勧めします。(ご存知かもしれませんが、、)
斉藤正彦さんの名著です。
http://www.amazon.co.jp/%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%85%A5%E9%96%80-%E5%9F%BA%E7%A4%8E%E6%95%B0%E5%AD%A6-1-%E9%BD%8B%E8%97%A4-%E6%AD%A3%E5%BD%A6/dp/4130620010/ref=sr_1_1?ie=UTF8&s=books&qid=1239847081&sr=8-1
沢山実践的な演習をこなしたいなら、こちらがお勧めです。
こちらは、図書館から借りて使用しました。解説が詳しく、かつ
良問が揃...続きを読む

Q数学書の名著、お薦め教えてください

はじめて、投稿します。よろしくお願いします。

私の数学のレベルは、高校卒業ぐらいです。
大学1-2年レベルから始めたいと思っています。
目標は、数学の厳密な基礎概念に基づいた数学体系全般・数学的方法全般の習得においています。

今、高校以上の数学書で所蔵しているのは、『微分積分概論』(越昭三監修/高橋泰嗣・加藤幹雄共著)
『数学小事典』(矢野健太郎編)
『数学英和・和英辞典』(小松勇作編)

自分なりに、数学書を本屋などで見たのですが、素人ですので、どれも大同に思えてしまいます。

そこで、最初に読むべき名著だという数学書は、ないでしょうか?

また、『教えて!goo』で以前の投稿を閲読したのですが、最初は「集合論」あるいは「数学基礎論」あるいは「実数論」と人によって見解が分かれていて、どの分野から手をつけるべきか迷っています。
どこから手をつけるべきでしょうか?

また、大体の流れは、「数学基礎論」「実数論」「集合論」→「線型代数」「微積分」→「群論」でいいのでしょうか?そうすると、位相幾何学、微分幾何学、代数学、解析学は、どのタイミングで学べばいいでしょうか?

はじめて、投稿します。よろしくお願いします。

私の数学のレベルは、高校卒業ぐらいです。
大学1-2年レベルから始めたいと思っています。
目標は、数学の厳密な基礎概念に基づいた数学体系全般・数学的方法全般の習得においています。

今、高校以上の数学書で所蔵しているのは、『微分積分概論』(越昭三監修/高橋泰嗣・加藤幹雄共著)
『数学小事典』(矢野健太郎編)
『数学英和・和英辞典』(小松勇作編)

自分なりに、数学書を本屋などで見たのですが、素人ですので、どれも大同に思えてし...続きを読む

Aベストアンサー

  pythagoras さんの勉学への意欲に敬意を表します。

 まずは微分積分と平行して、線型代数を学習されることをお勧めします。教科書は、
   齋藤正彦著「線型代数入門」基礎数学1・東京大学出版会
が一般的だと思います。これより高度な内容を扱ったものには、
   佐竹一郎著「線型代数学」数学選書1・裳華房(しょうかぼう)
があります。
 線型代数で公理的な扱い方に慣れ、その有用性がわかっていないと、集合論・位相空間論へ進んでいくのは難しいと思います。とりあえず線型空間の公理系までを目標にしてはどうでしょうか。

 微分積分では#1の方が勧めておられる「解析概論」が定番でしたが、最近では、
   杉浦光夫著「解析入門I」基礎数学2・東京大学出版会
の評判もよいようです。実数論は、微分積分の基礎( foundation の意味であって、決して易しくはありません)として「解析概論」「解析入門I」ともに第1章が当てられています。
 微分積分では、積分の厳密な定義、無限級数あたりがとりあえずの目標になるでしょう。そのあたりまでこなせば、複素関数論へ入っていくこともできるかと思います。

 群論などの代数学、位相幾何学は、集合論・位相空間論が済んでいないとムリだと思います。他の分野も同様ですので、とりあえずは以上のようなところから始められてはいかがでしょう。

  pythagoras さんの勉学への意欲に敬意を表します。

 まずは微分積分と平行して、線型代数を学習されることをお勧めします。教科書は、
   齋藤正彦著「線型代数入門」基礎数学1・東京大学出版会
が一般的だと思います。これより高度な内容を扱ったものには、
   佐竹一郎著「線型代数学」数学選書1・裳華房(しょうかぼう)
があります。
 線型代数で公理的な扱い方に慣れ、その有用性がわかっていないと、集合論・位相空間論へ進んでいくのは難しいと思います。とりあえず線型空間の公理系...続きを読む

Q量子力学の良い演習書を教えてください。

量子力学の良い演習書を教えてください。
今、小出昭一郎の「量子力学1」を読んでいるのですが、理解を深めるために問題を解きたいと考えています。
一応院試も視野に入れて典型的な問題と本質が理解できているかを問うような問題を解きたいのですが演習書は何が良いでしょうか?
本質が理解できているか問うような問題とは、今読んでいる「量子力学1」が誤解なくきちんと理解できているか確かめれるような問題という意味です。
小出昭一郎の「量子力学演習」を少し読んでみたのですが院試向けではないような印象でした。
大学演習シリーズや詳解シリーズも少し手をつけたことがあるのですが量が多いのでどの問題をやればいいか困るので挫折しました。
できれば一冊をすべてやるのにちょうど良い分量のがいいです。

Aベストアンサー

和書の手ごろな分量であれば、
岡崎 誠、
演習 量子力学 (セミナーライブラリ物理学)、
サイエンス社
http://www.amazon.co.jp/dp/4781910068/
だと思います。

洋書であれば、
Zettili,
Quantum Mechanics--Concepts and Applications,
Wiley
http://www.amazon.co.jp/dp/0470026790/
もオススメですね。

大学の講義で量子力学の演習があれば、それを大いに活用してください。

Qジョルダン標準形ってなんのため?

線形代数の本を読んでいると、後ろのほうにジョルダン標準形がでてきます。
書いてあることをなぞることはなんとかできるのですが、固有値の次にいきなり前触れもなく現れるので、これが
・どういう(歴史的)要請・経由で
・何のために
現れたのかがわかりません。

ジョルダン標準形の本質は何でしょうか?

Aベストアンサー

ジョルダンは線形代数の最終関門でこの証明を一度は理解していたほうがいいでしょう
証明は灯台出版から単行本が出ていて何種類か乗っています
私は単因子(あるいは行列子因子)による方法を一度は理解しましたが忘れました
でも必要があれば読み返せばすぐに思い出せるようにはなっています
定理は簡単なのですが重要です
制御理論で使います
ジョルダンの標準形は正則行列で対角化できない行列を準対角行列に分解するものです
x(t)を要素がtの関数の列ベクトルとし
Aを要素が定数の正方行列とし
v(t)を要素がtの関数の列ベクトルとし
x’(t)=A・x(t)+v(t)としたときに
正則行列PによってP^(-1)・A・Pが対角行列になるならば
x(t)を簡単に求めることができます
しかし正則行列PによってP^(-1)・A・Pが対角行列にならなくても
正則行列PによってP^(-1)・A・Pがジョルダンの標準形になれば
少し複雑になりますが簡単にx(t)を求めることができます
本質が何打という質問は何回で答えることができる人はいないのでは?

ジョルダンは線形代数の最終関門でこの証明を一度は理解していたほうがいいでしょう
証明は灯台出版から単行本が出ていて何種類か乗っています
私は単因子(あるいは行列子因子)による方法を一度は理解しましたが忘れました
でも必要があれば読み返せばすぐに思い出せるようにはなっています
定理は簡単なのですが重要です
制御理論で使います
ジョルダンの標準形は正則行列で対角化できない行列を準対角行列に分解するものです
x(t)を要素がtの関数の列ベクトルとし
Aを要素が定数の正方行列とし
...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q大学数学の勉強のしかた

大学で学ぶ数学の勉強の仕方に迷っています。

(1)高校までは、公式を覚える→問題演習 という流れで勉強をしていました。高校数学は、大学入試の問題が解けることがゴールだと思っていました。しかし、大学の数学は、何ができればゴールなのでしょうか?

(2)高校では、公式を覚え、問題を解いてました。大学の数学では定理、定義、命題、補題など、公式らしきものの量が多いですよね?全て覚えようとしたら相当な暗記量を強いられます。これらは全て暗記、または自力で導き出せるようにする必要があるのでしょうか?

(3)定理などは全て証明がついていますが、これらの証明を全て自力でできるようにならなければならないのでしょうか??

今、微積分、線形代数、集合論、ルベーグ積分などを勉強しています。今僕がやっている方法は、教科書の定理、定義などを暗記し、証明はわかるところだけ読んでいます。問題演習は、やったりやらなかったりです。
しかし、この方法だと、定理などの証明が理解できないことが多く、なかなか先に進みません…

以上が、勉強していく上での疑問です。どなたかアドバイスいただければ幸いです。

大学で学ぶ数学の勉強の仕方に迷っています。

(1)高校までは、公式を覚える→問題演習 という流れで勉強をしていました。高校数学は、大学入試の問題が解けることがゴールだと思っていました。しかし、大学の数学は、何ができればゴールなのでしょうか?

(2)高校では、公式を覚え、問題を解いてました。大学の数学では定理、定義、命題、補題など、公式らしきものの量が多いですよね?全て覚えようとしたら相当な暗記量を強いられます。これらは全て暗記、または自力で導き出せるようにする必要があるのでし...続きを読む

Aベストアンサー

大学での学び方に関する本は何冊も出版されていますから、図書館で探されてはいかがでしょう。
 本格的な数学の学び方に関する本であれば、

伊原 康隆 (著)志学数学―研究の諸段階・発表の工夫 シュプリンガー数学クラブ
http://www.amazon.co.jp/exec/obidos/ASIN/4431711406/

数学セミナー編集部 (編集)数学ガイダンスhyper
http://www.amazon.co.jp/exec/obidos/ASIN/4535784272/

ブックガイド <数学>を読む 岩波科学ライブラリー 113
http://www.amazon.co.jp/exec/obidos/ASIN/4000074539/

などは薄いし、大学図書館にも入っているでしょうし、一読する価値はあると思います。

 また、日本評論社の『数学セミナー』、サイエンス社の『数理科学』、現代数学社の『理系への数学』といった理系の大学生向けの数学雑誌が大学図書館に入っていないわけはないと思いますし、時期的に勉強の仕方を扱った記事も載っていると思いますから、少し時間を作って、バックナンバー含め眺められてはいかがでしょうか。

大学での学び方に関する本は何冊も出版されていますから、図書館で探されてはいかがでしょう。
 本格的な数学の学び方に関する本であれば、

伊原 康隆 (著)志学数学―研究の諸段階・発表の工夫 シュプリンガー数学クラブ
http://www.amazon.co.jp/exec/obidos/ASIN/4431711406/

数学セミナー編集部 (編集)数学ガイダンスhyper
http://www.amazon.co.jp/exec/obidos/ASIN/4535784272/

ブックガイド <数学>を読む 岩波科学ライブラリー 113
http://www.amazon.co.jp/exec/obidos/ASIN/4000074539/

...続きを読む


人気Q&Aランキング