【最大10000ポイント】当たる!!質問投稿キャンペーン!

関数(定義域・値域)についての質問

以下の問題が分かりません。独力で答えは出しましたが間違いだらけだと思うので指摘・訂正して頂けませんでしょうか?

次の関数の定義域A、値域Bを求めよ。
  Z=√(x+y)

「関数(定義域・値域)についての質問」の質問画像

A 回答 (3件)

式を見て、関数の定義域を求めよう …という考えが、根本から大間違い。


定義域は、関数を定義するときに指定しておかなければならないもので、
あとから求めることができるものではありません。

例えば、z = √(x+y) という式に関連して…

f(x,y) = √(x+y) ただし 1 < x < 2, 3 < y < 4
のような関数を定義することもできるし、

f(x,y) = √(x+y) ただし 100 ≦ x, -12 < y < 7
のような関数を定義することもできる。

定義域を広くとりたいなら、
x も、y も、実部が負でない複素数 …のような f(x,y) = √(x+y)
を定義することもできます。

とにかく、z = √(x+y) だけでは、関数が定義できていないのです。
一方、値域のほうは、定義域と写像が定義されれば、一意に決まります。
    • good
    • 1
この回答へのお礼

詳しく解説して頂きありがとうございました。みなさんのご回答はどれも有り難く、ベストアンサーを決めるのは迷いました...。

お礼日時:2010/05/08 07:53

Zを定数、yをxの関数とみるのであれば、



y=-x+z^2 (但しz>=0) であり、定義域・値域とも
導出のお答えでOKです。
    • good
    • 0
この回答へのお礼

回答して頂きありがとうございます。
これで合っているのでしょうか?:->

お礼日時:2010/05/08 07:52

関数の定義域は、通常は与えられるものですが、


特に指定がなければ、x、yは任意の実数とします。

関数Zはxとyの2変数の関数です。
定義域は、集合R×R。
これはx-y平面上のすべての点。
値域は根号の性質から非負の実数。
    • good
    • 0
この回答へのお礼

回答して頂きありがとうございます。
この問題、答えがどこにも書いてないので自力で出す他無く、苦労していたんです。

お礼日時:2010/05/08 07:50

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q2変数関数の定義域について

z=sin(x^2-2y)の定義域は実数全体らしいのですが
何故、平面全体ではないのでしょうか?
x、yが変数なのだから平面全体かと思うのですが・・・

ご解答よろしくお願いします。

Aベストアンサー

書き間違いというよりも、その先生は「実数全体」という統一的な表現と、「数直線全体」「平面全体」「空間全体」といった次元ごとに異なる言い方をした表現の区別をあまり意識せずに使っているのではないでしょうか。
大学の先生は、複数ある用語の使い分けなどはあまり考えない場合が多いです。
高校英語になるとthisを「あれ」と訳しても怒られなくなりますよね。中学だと「これ」じゃないとバツになりますが。
それと同じです。学年があがるにつれ、「些事にこだわらない」という風潮ができていくのでしょう。まあ用語によっては「使い分けが大事」という用語もあるのかもしれませんが。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q指数やLogが含まれる2変数関数 f(x,y)の偏微分について

こちらの皆様のおかげで、2変数関数 f(x,y)の偏微分の解き方が
ようやく理解できました。大変ありがとうございました。
それで、追加の質問で申し訳ないのですが、
以下の解き方があっているか、ご指導のほど、よろしくお願いします。

【問題】
次の2変数関数f(x,y)を偏微分せよ。
すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。

(5) Log √(x^2+y^2+1)
先に質問をした回答より、
fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1)
fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1)
また、(Log x)'=1/xの公式と合わせて,
Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/x
Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/y

(6) e^(xy)
fx(x,y)=e^(xy)
fy(x,y)=e^(xy)

(7) sin xy
fx(x,y)=cos xy = y * cos x
fy(x,y)=cos yx = x * cos y

(8) e^x * sin y
fx(x,y)=e^x * sin y
fy(x,y)=e^x * cos y

(9) x^2 cos xy
積の微分の公式 より、
fx(x,y)=2x * cos xy + x^2(-sin xy) = 2x cos xy -x^2 sin xy
fy(x,y)=x^2 * ( -sin xy) = -x^2 sin xy

以上、適用する公式などにおかしいところがあれば、
ご指導お願いします。

こちらの皆様のおかげで、2変数関数 f(x,y)の偏微分の解き方が
ようやく理解できました。大変ありがとうございました。
それで、追加の質問で申し訳ないのですが、
以下の解き方があっているか、ご指導のほど、よろしくお願いします。

【問題】
次の2変数関数f(x,y)を偏微分せよ。
すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。

(5) Log √(x^2+y^2+1)
先に質問をした回答より、
fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1)
fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1)
また、(Log...続きを読む

Aベストアンサー

> 先に質問をした回答より、
>fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1)
>fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1)
これらの式は、理解不能です。
正しい式を書いてください。

>(5) Log √(x^2+y^2+1)
大学数学なら、対数の底を明記してください。
logは自然対数(対数の底はネピア数)である、とか、ln(x),log_e(x)などと書くようにしてください。ln(x)は natural logarithm of x、自然対数の意味として使われる。
>Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/x
×
>Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/y
×
f(x,y)=ln √(x^2+y^2+1)=(1/2)ln(x^2+y^2+1)
fx(x,y)=(1/2)*(x^2)'/(x^2+y^2+1)=x/(x^2+y^2+1)
同様にして
fy(x,y)=y/(x^2+y^2+1)

>(6) e^(xy)
>fx(x,y)=e^(xy)
×
>fy(x,y)=e^(xy)
×
fx(x,y)=(xy)'*e^(xy)=ye^(xy)
fy(x,y)=(xy)'*e^(xy)=xe^(xy)

>(7) sin xy
>fx(x,y)=cos xy = y * cos x
×
fx(x,y)=y*cos(xy)
>fy(x,y)=cos yx = x * cos y
×
fx(x,y)=x*cos(xy)

>(8) e^x * sin y
>fx(x,y)=e^x * sin y
OK
>fy(x,y)=e^x * cos y
OK

>(9) x^2 cos xy
>fx(x,y)=2x * cos xy + x^2(-sin xy)
×
fx(x,y)=2x*cos(xy) +(x^2)(-y*sin(xy))
= …

>fy(x,y)=x^2 * ( -sin xy) = -x^2 sin xy
×
fy(x,y)=(x^2){-x*sin(xy)}
= …

理解の徹底)
fx(x,y)を求めるときはyを定数として変数xについて扱うこと。
fy(x,y)を求めるときはxを定数として変数yについて扱うこと。

> 先に質問をした回答より、
>fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1)
>fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1)
これらの式は、理解不能です。
正しい式を書いてください。

>(5) Log √(x^2+y^2+1)
大学数学なら、対数の底を明記してください。
logは自然対数(対数の底はネピア数)である、とか、ln(x),log_e(x)などと書くようにしてください。ln(x)は natural logarithm of x、自然対数の意味として使われる。
>Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/x
×
>Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/y
×
...続きを読む

Qn次導関数の求め方

x^3・sinxのn次導関数を求めたいんですけどやり方がよくわかりません。これはライプニッツの公式をつかうらしいんですけど…帰納法じゃできないんですか?あとよろしければライプニッツを使った解法もおしえてもらえればうれしいです。よろしくお願いします。

Aベストアンサー

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法で証明しなくても一気に結果を求めることができます.

とはいうものの,実際この公式を適用するためには(*1)の右辺を見ればわかるように,個々の関数fとgについての1~n階微分までの情報はあらかじめ知っている必要があります.
この問題では個々の関数の微分は下のように
x^3 → 3x^2 → 6x→ 6 →0(以降すべて0)
sin(x) → cos(x) → -sin(x) → -cos(x) → …(以降繰り返し)---(*2)
簡単に求められます.しかもx^3の方は4次以上の微分は0なので,f=x^3, g=sin(x)とおくと(*1)の右辺でk=4以降の項は出てきません.すなわち,
D^(n)(x^3*sin(x))=x^3*D^(n)(sin(x))+C[n,1]*3x^2*D^(n-1)(sin(x))+C[n,2]*6x*D^(n-2)(sin(x))+C[n,3]*6*D^(n-3)(sin(x))
となります.sin(x)の微分は(*2)よりまとめて
D^(n)(sin(x))=sin(x-nπ/2)
とかけますので,
D^(n-1)(sin(x))=sin(x-nπ/2+π/2)=cos(x-nπ/2)
D^(n-2)(sin(x))=cos(x-nπ/2+π/2)=-sin(x-nπ/2)
・・・
のように変形しておけば,最終的に
D^(n)(x^3*sin(x))=x^3*sin(x-nπ/2)+3nx^2*cos(x-nπ/2)-3n(n-1)x*sin(x-nπ/2)-n(n-1)(n-2)*cos(x-nπ/2)
となることがわかります.

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q2変数関数の極限値の解き方(色々なケース)

以下の8問の2変数関数の極限値を求めてる問題を解いてみたのですが
計算結果が正しいか自信がありません。
わかる方、ご指導よろしくお願いいたします。

【問題】
次の極限値は存在するか。存在する時には、その極値を求めよ。

(1) lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)は極限値は0をとる。


(2) lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2+2y^2)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2+2y^2)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)は極限値は0をとる。


(3) lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/(x^2+2y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/(x^2+2y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)は極限値は0をとる。


(4) lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x-y^2)/(x^2-y) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x-y^2)/(x^2-y) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)は極限値は0をとる。


(5) lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (y^2)/(x^2+y^2) = 1
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (y^2)/(x^2+y^2) = 0
上記より、異なる近づけ方をすると極限値が1つに定まらない。
よって、lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)は極限値を持たない。


(6) lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2-y^2)/(x^2+y^2) = -1
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2-y^2)/(x^2+y^2) = 1
上記より、異なる近づけ方をすると極限値が1つに定まらない。
よって、lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)は極限値を持たない。


(7) lim [(x,y)→(0,0)] (xy)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/(x^2+y^2)は極限値は0をとる。


(8) lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2y)/(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2y)/(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)は極限値は0をとる。


もし、導き方がおかしいようなら、ご指摘いただければと思います。
以上、ご指導のほどよろしくお願いします。

以下の8問の2変数関数の極限値を求めてる問題を解いてみたのですが
計算結果が正しいか自信がありません。
わかる方、ご指導よろしくお願いいたします。

【問題】
次の極限値は存在するか。存在する時には、その極値を求めよ。

(1) lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/√(x^...続きを読む

Aベストアンサー

訂正
(1)は式に絶対値をつけとかんといかんかった。
|(xy)/√(x^2+y^2)|=|x|/√(x^2+y^2)・|y|/√(x^2+y^2)・√(x^2+y^2)
≦1・1・√(x^2+y^2) →0
(3)と(8)も。
失礼しました。


人気Q&Aランキング