τ関数のmapleでの書き方。

τ_n=?【1≦i_1<i_2<・・・<i_n≦N】{w_(i_1)・・・w_(i_n)Π【1≦k<l≦n】(x_(i_k)-x_(i_l))^2}をメイプルで書きたいのですが書き方分かる人教えてください。。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

参考URLを忘れました



参考URL:http://matha.e-one.uec.ac.jp/~naito/kisojo.pdf
    • good
    • 0

式の表記が良く分かりませんが、添付図のような感じでしょうか。


Maple による乗積の表わし方は、参考URLの27ページ(PDF32ページ)の 「6.3 乗積」に出ています。

product は、先頭の文字を大文字で書くと定義するだけですが、先頭を小文字で書くと計算が実行されてしまいますので注意してください。大文字と小文字の違いを添付図に載せておきます。
「τ関数のmapleでの書き方。」の回答画像1
    • good
    • 0
この回答へのお礼

ありがとうございました。いや。。少し違いますね。。。普通のproductじゃないんです。。。
私が書いた式はproductの下の条件をを満たすものだけの積をあらわしてます。。。。。

お礼日時:2010/05/31 13:10

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QR^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
から先に進めません。
λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。
どのすれば=0にたどり着けますでしょうか?

(イ)について
答えは多分Yesだと思います。
Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。
なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。
それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。
今,(ア)より
inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0
と分かったので
0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
=inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(但しBd(I_i)は境界点)
=inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(∵||の定義)
からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となればI_i\Bd(I_i)は開集合になので
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え,
∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え,
μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア))
となりおしまいなのですが

inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
から
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となる事がどうしても言えません。どうすれば言えますでしょうか?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=...続きを読む

Aベストアンサー

数列の部分和の定義と∩∪の定義からすぐだと思いますよ。
面倒なので外測度を単にλで表します。
仮定はΣλ(A_k)<∞です。これは級数の収束の定義から部分和
S_N=Σ[k=1,..,N] λ(A_k)
がコーシー列、よって
任意のε>0に対してNが存在し、n≧Nならば
Σ[k=n,...,∞] λ(A_k)<ε
ということを言っているわけです。
問題は、∩[n=1,..,∞]∪[k=n,..∞] A_kの外測度を求めることですが上の事実を利用できることが分かると思います。上で示したNをとってきます。このとき
λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)≦Σ[k=N,..,∞] λ(A_k)<ε
となるのはほとんど明らかですね。任意のεに対してもっと大きい番号N'をとっても問題の集合はN'から先の和集合に含まれるわけですからこれは結局λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)=0でなければならないことを示しています。

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

QΣa_kとΣb_kを正項級数.lim(a_n/b_n)=0且つΣb_kが収束ならばΣa_kも収束

[問]Σ[n=0..∞]a_kとΣ[n=0..∞]b_kを共に正項級数とする。
lim[n→∞](a_n/b_n)=0且つΣ[n=0..∞]b_kが収束ならばΣ[n=0..∞]a_kも収束。

を証明したいのですがどうすれば分かりません。

Σ[n=0..∞]a_kが正項級数とlim[n→∞]lim(a_n/b_n)=0より
a_n≦0

これからどのようにすればいいのでしょうか?

Aベストアンサー

こんばんは。問題に対する質問者さんの考え方は基本的の事柄を理解していないように感じます。解答のアウトラインを説明しますので細部はご自分で解析学の教科書を開いて勉強してください。

lim[n→∞](a_n/b_n)=0 より、ある実数 K>0 が存在して

a_n/b_n < K (for all n>0) …(1)

よって、a_n < Kb_n (for all n>0)

Σ[n=0..∞]b_n が収束するから

Σ[n=0..∞]a_n < Σ[n=0..∞]Kb_n = KΣ[n=0..∞]b_n < ∞ …(2)

したがって、Σ[n=0..∞]a_n は収束する。

以上が解答です。この解答に使われている重要な事柄は

(1) 収束する数列は有界である。
(2) 上に有界な単調増加の数列は収束する。

です。レポートにそのまま書くのはかまわないと思いますが、それでは本当の意味で数学の力はつきません。時間がかかってもかまいませんから、きちんと(1)、(2)を勉強してそれからこの問題の解答を理解するようにしてください。

こんばんは。問題に対する質問者さんの考え方は基本的の事柄を理解していないように感じます。解答のアウトラインを説明しますので細部はご自分で解析学の教科書を開いて勉強してください。

lim[n→∞](a_n/b_n)=0 より、ある実数 K>0 が存在して

a_n/b_n < K (for all n>0) …(1)

よって、a_n < Kb_n (for all n>0)

Σ[n=0..∞]b_n が収束するから

Σ[n=0..∞]a_n < Σ[n=0..∞]Kb_n = KΣ[n=0..∞]b_n < ∞ …(2)

したがって、Σ[n=0..∞]a_n は収束する。

以上が解答です。この解答に使われている...続きを読む

Q単関数Σ[k=1..n]a_k1_E_kが可測⇔E_1,E_2,…,E_kは全て可測

証明問題です。

1_E(x)=1(x∈Eの時),0(xがEに含まれない時)という関数1_Eを定義関数(特性関数)という。

[命題] {x∈E;f(x)>r}(for∀r∈R)が可測ならば{x∈E;r≦f(x)≦r'}(r,r'∈R)も可測。

[問](Ω,B)を可測空間とする。
単関数Σ[k=1..n]a_k1_E_k (a_k∈R,E_k⊂Ω,1_E_kは定義関数(特性関数) (k=1,2,…,n))とする。
f:=Σ[k=1..n]a_k1_E_kがE:=∪[k=1..n]E_kで可測関数⇔E_1,E_2,…,E_kは全て可測集合。

[証]
(必要性)
fがEで可測関数だから∀r∈R,{x∈E;f(x)>r}∈B.
それでE_i∈Bとなる事を示せばいいのだから
fは単関数だからf(E_i)=a_iとなる定義域がある。
よって上記命題を使って,E_i={x∈E;a_i≦f(x)≦a_i}∈Bとなる予定だったのですが
関数値がa_iとなる定義域はE_iだけとは限りませんよね。
各a_1,a_2,…,a_kが全て異なる値なら
個々でE_i={x∈E;a_i≦f(x)≦a_i}∈Bと持って行けて命題が使っておしまいなのですが,
もしかしたら同じ関数値を採る定義域がE_1,E_2,…,E_kの中に複数個あるかもしれませんよね。
(例えばf=(E_i)=f(E_j)=a_i)
その場合,{x∈E;a_i≦f(x)≦a_i}=E_i∪E_jとなってしまい,E_i∪E_j∈Bで
E_i∪E_jが可測集合である事は示せますがE_iひとつだけで可測になる事が示せません。

こういう場合はどうすればE_iだけが可測である事を示せますでしょうか?

証明問題です。

1_E(x)=1(x∈Eの時),0(xがEに含まれない時)という関数1_Eを定義関数(特性関数)という。

[命題] {x∈E;f(x)>r}(for∀r∈R)が可測ならば{x∈E;r≦f(x)≦r'}(r,r'∈R)も可測。

[問](Ω,B)を可測空間とする。
単関数Σ[k=1..n]a_k1_E_k (a_k∈R,E_k⊂Ω,1_E_kは定義関数(特性関数) (k=1,2,…,n))とする。
f:=Σ[k=1..n]a_k1_E_kがE:=∪[k=1..n]E_kで可測関数⇔E_1,E_2,…,E_kは全て可測集合。

[証]
(必要性)
fがEで可測関数だから∀r∈R,{x∈E;f(x)>r}∈B.
それでE_i∈Bとなる事を示せばいいのだから
fは単...続きを読む

Aベストアンサー

a_kはすべて異なるという条件はありませんか?
例えば、非可測集合Eをとって
1_E + 1_(E^c)=1
は可測関数、しかしE,E^cは非可測です。

Aベストアンサー

(*)式が間違っているように見えますが・・・。これではn=3のときにしか成立しません。
n=4のとき
P(C(1)∪C(2)∪C(3)∪C(4))
= P(C(1))+P(C(2))+P(C(3))+P(C(4))
-P(C(1)∩C(2))-P(C(1)∩C(3))-P(C(1)∩C(4))-P(C(2)∩C(3))-P(C(2)∩C(4))-P(C(3)∩C(4))
+P(C(1)∩C(2)∩C(3))+P(C(1)∩C(2)∩C(4))+P(C(1)∩C(3)∩C(4))+P(C(2)∩C(3)∩C(4))
-P(C(1)∩C(2)∩C(3)∩C(4))
というのは理解されていますか?

正しくは、
P(∪[i=1..n]C(i))
= Σ[i=1..n]P(C(i))-Σ[i1,i2=1..n, i1<i2]P(C(i1)∩C(i2))+Σ[i1,i2,i3=1..n, i1<i2<i3]P(C(i1)∩C(i2)∩C(i3))
-Σ[i1,i2,i3,i4=1..n, i1<i2<i3<i4]P(C(i1)∩C(i2)∩C(i3)∩C(i4))+…+(-1)^(n-1)P(∩[i=1..n]C(i))
となり、交互に符号が代わり共通部分を取る集合の数も1つずつ増えます。

証明の方針はあっていますよ。

(*)式が間違っているように見えますが・・・。これではn=3のときにしか成立しません。
n=4のとき
P(C(1)∪C(2)∪C(3)∪C(4))
= P(C(1))+P(C(2))+P(C(3))+P(C(4))
-P(C(1)∩C(2))-P(C(1)∩C(3))-P(C(1)∩C(4))-P(C(2)∩C(3))-P(C(2)∩C(4))-P(C(3)∩C(4))
+P(C(1)∩C(2)∩C(3))+P(C(1)∩C(2)∩C(4))+P(C(1)∩C(3)∩C(4))+P(C(2)∩C(3)∩C(4))
-P(C(1)∩C(2)∩C(3)∩C(4))
というのは理解されていますか?

正しくは、
P(∪[i=1..n]C(i))
= Σ[i=1..n]P(C(i))-Σ[i1,i2=1..n, i1<i2]P(C(i1)∩C(i2))+Σ[i1,i2,i3=1..n, i1<i2<i3]P...続きを読む


人気Q&Aランキング

おすすめ情報