人に聞けない痔の悩み、これでスッキリ >>

宇宙が無限であることの証明


宇宙が無限であることを証明する。

背理法により行う。

仮に宇宙が有限であるとする。

すると適当な大きさの半径R[m]の球体G0により宇宙全体を包み込むことができる。
次に、この球体の半径Rより1m大きな球体G1を考える。
G0とG1を同心としたとき、G1とG0の差分として1mの厚みを持つ球面体(G1-G0)が得られる。
球面体(G1-G0)は球体G0の外部にあるがこれも空間を構成するのでやはり宇宙の一部である。
なぜなら任意の空間は宇宙の部分であるからである。
つまり適当な大きさの半径R[m]の球体G0により宇宙全体を包み込むことができるとした最初の仮定は矛盾を生む。
従って宇宙は有限では有り得ない。
宇宙は無限である。

証明終わり。

ご意見ください

---------------------------------------------------------------------- 
補足:
実を言うと、宇宙が有限か無限かを問うこの問題、最初は哲学の問題であろうと考え最初に哲学カテに投稿したのですが、そこでは全く期待外れの結果に終わってしまいました。
どうやら哲学カテの方は完全に宗教漬になっていて神やら仏やらの議論ばかりに終始し真理について語る場所ではないことが分かりました。
そこで同様の問題を物理カテに投稿しました。物理は科学なので少しはマシな回答を頂けるのではないかと期待したからです。
さらに同じ問題を数学カテにも投稿したわけです。数学カテであればさらにマシな回答が頂けるのではと考えたのです。
 
 

このQ&Aに関連する最新のQ&A

A 回答 (14件中1~10件)

私もalice_44様と同感に思います。


私には宇宙の有限無限はどうでもいいのですが、
質問者様の背理法には、当初提示された論中にはない、
「宇宙は万物である」という、「後付」で、
仮定を上げること自体を否定するような大前提を加えないと
結論が成立しない、という矛盾があると思います。
しかし質問者様がそれに納得できず、独自の証明を上げろというのでしたら
質問者様の真似で背理法をしてみましょう。


ここに宇宙αが存在する。

宇宙αは有限であると仮定する(1)

(1)が正しければ、境界が存在する-(2) 

 ※境界が存在しなければ有限である証明が出来ず、(1)は否定される-(2*)

(2)が正しければ、境界には外側が存在する-(3)

 ※外側が存在しなければ(3)は否定され(2*)に戻る

(3)が正しいとして、2つの仮定を提示する。

   1.境界の外側は宇宙αと同じ要素で構成されている-(4)

   2.境界の外側は宇宙αと異なる要素で構成されている-(5)

(4)が正しければ、境界の内外の差別化が困難になり

   境界は意味を失って(2)は否定され、それによって(1)も否定される。

(5)が正しければ、宇宙αを内包する、宇宙αとは異なる空間が存在することになる。

  
仮にこれを宇宙βとする。


仮定(1)を証明することによって宇宙βが生まれたが、
仮定(1)を宇宙βに当てはめると、宇宙γが生まれることになる。
さらに宇宙γに仮定(1)を当てはめ・・・と繰り返すと、
有限の宇宙を内包する別宇宙が無限に生まれることになる。

つまり宇宙の有限を証明することによって、
逆に無限を認めざるをえないパラドックスに陥る。

だから(1)は否定され、宇宙は無限である、という結論に達する。

この回答への補足

うーむ、実に素晴らしい
今何度か読みなおしているが全く完璧であります。
12番目にしてやっと期待していた以上の回答を得ることが出来ました。
ねばった甲斐があったというものです。
またgoo事務局に消されんうちにコピー取っとかないといけませんね。
もうしばらく考えてみますが問題なさそうなので早速、数学基礎論の大御所(志賀浩二先生あたり)に見てもらわないと。
証明のタイトルは、「宇宙が無限であることの証明 - 有限宇宙のパラドックス」でよいでしょう。
有難うございます。
 

補足日時:2010/06/02 09:36
    • good
    • 0

>宇宙は幾何学的には球のようなもの、つまり有限であるがつなぎ目がないと言いたいのであろう。



違うよ。
    • good
    • 0

>テニスボールを握ってみなさい。


>あなたは自分の手でテニスボールの表面の感触を確かめることができるはず。
>それが境界です。

それは、「球」の境界であり、イコール球の表面。
そうではなくて、「球の表面」に境界はない、という話です。
    • good
    • 0
この回答へのお礼

 
その話は実に単純である。
宇宙は幾何学的には球のようなもの、つまり有限であるがつなぎ目がないと言いたいのであろう。
ただし、それは同時につなぎ目がない閉じた構造であることを意味する。
このとき閉じた幾何学的構造は常に別の閉じた幾何学的構造によって包含することが出来るのである。
この問題は既に証明済みでなのです。
tak7171さんによるNo.12の証明をみるとよい。納得できるはずです。
 

お礼日時:2010/06/02 10:13

>宇宙の幾何学的構造がどうであれ長さはそれとは独立に常に存在します。



たしかに、長さは無限量であり、宇宙の構造とは関係なく自由に扱えると思います。
でもそれはあくまでも思考の中ではということではないでしょうか。
ですから、宇宙より大きな半径Rの球体G0をイメージすることは可能です。
しかし、実際にこの宇宙で長さというものを扱えるのは、
この宇宙が長さの概念を持っているからであり、
ほかの人が回答しているように、宇宙の外では長さが通用しないのに、
そこにまで長さの概念を持ち込むことは不可能です。いくらイメージはできたとしてもです。
つまり、

>有限であれば半径Rは確実に存在し、G0も存在する。

とのことですが、宇宙の外では長さの概念があるのかないのか分かりませんので、
宇宙が有限だとしてもG0の存在が示せない可能性があり、
この可能性を払拭しないかぎり(=宇宙の外でも長さを扱えることを示さないかぎり)、
これ以上この証明をすすめることはできないと思います。
    • good
    • 0
この回答へのお礼

宇宙の外は存在しないのです。
その存在しないものを存在するとして話を進めるとあらゆる矛盾が生まれる。
それだけのことです。
その矛盾を示せばよいのです。
 
MandhelingさんにもNo.7と同様のお礼を述べたい。
もし宇宙が有限であると考えるのなら一つそれを証明してみてはどうだろう。
もし宇宙が無限であると考えるのならあなたのやり方で独自に証明(完成版)してみてはどうか。
そのほうが話が早いと思うので。
それをここで証明し披露したほうがよい。
私の証明に対し色々と回りくどい指摘を続けていくよりその方が余程ストレートでよいと思う。
どうですやってみませんか。 

お礼日時:2010/06/02 05:09

現時点で、No.7 までの回答に質問者のコメントが付いているが、


No.1 と No.6 を飛ばしているのは、何の反論もすることができないから
ということで ok?
    • good
    • 0
この回答へのお礼

No.6での循環論法ではないかとの指摘はなかなか鋭い指摘と思うが循環はしていない。
宇宙の定義は明確であり、「宇宙は万物である」となる。
空間は万物の一つである。
従って任意の空間は宇宙であり,G1-G0は空間をなすので宇宙の一部である。
全て明確であり、循環はしていない。

alice_44さんにもNo.7と同様のお礼を述べたい。
もし宇宙が有限であると考えるのなら一つそれを証明してみてはどうだろう。
もし宇宙が無限であると考えるのならあなたのやり方で独自に証明(完成版)してみてはどうか。
そのほうが話が早いと思うので。
それをここで証明し披露したほうがよい。
私の証明に対し色々と回りくどい指摘を続けていくよりその方が余程ストレートでよいと思う。
どうですやってみませんか。

お礼日時:2010/06/02 04:18

#7です。



>もし宇宙が有限であると考えるのなら一つそれを証明してみてはどうだろう。
>そのほうが話が早いと思うが、違いますか。
いえ、ですから、私は貴方の味方です。有限である、とは一言も言っていません。ただ、自身の浅学の為「球面体(G1-G0)は球体G0の外部にあるがこれも空間を構成するのでやはり宇宙の一部である。なぜなら任意の空間は宇宙の部分であるからである。」が矛盾のように感じられ、理解できないので、是非、ご教授いただきたい、と先だってよりお願いいたしております。
    • good
    • 0
この回答へのお礼

私は貴方の味方ですとは有り難いお言葉。

No.6のお礼を見て下さい。
ここでの証明は背理法ベースなので証明のどこかで必ず矛盾が登場します。
当然その矛盾を導き出すのが本証明の目的なわけです。

nananotanuさんは宇宙に対し無限のイメージを持っているのであればそのイメージを表現してみるとよい。
私の場合宇宙に対し強烈な無限のイメージがあります。宇宙は無限である以外には有り得ないと。
それを何としても証明しなければならないのです。
 

 

お礼日時:2010/06/02 04:47

ちゃんと優しくすんだよ。



テニスボール「の裏側」を握ってみなさい。^○^

協会があるからきっと握れるから。
    • good
    • 0

>テニスボールを握ってみなさい。


それは、半径方向の境界だと思います。

一方、#5さんが言われている境界は(ご理解できなかったかもしれませんが)表面に沿った方向の境界です。
    • good
    • 0
この回答へのお礼

もし宇宙が有限であると考えるのなら一つそれを証明してみてはどうだろう。
そのほうが話が早いと思うが、違いますか。
それをここで証明し披露したほうがよい。
私の証明に対し色々と回りくどい指摘を続けていくよりその方が余程ストレートでよいと思う。
どうですやってみませんか。
 

お礼日時:2010/06/01 17:29

No.1 で論破されているじゃないの。



G0 の定義上、G0 より外は宇宙の外となる。
したがって、G1-G0 は、宇宙の内ではない。

そこを「空間を構成するので」で言い抜けるのは、
要するに、宇宙は無限と仮定したから宇宙は無限だ
と言っているに過ぎない。

哲学方面の方は、
そのような「論証」を好むのかも知れないが、
数学を含む論理学の世間では、
循環論法には価値がない。
    • good
    • 0
この回答へのお礼

G0 の定義上、G0 より外は宇宙の外となる。
したがって、G1-G0 は、宇宙の内ではない。・・・・(1)
一方、G1-G0 は空間である。
G1-G0 は空間であるから宇宙の内になければならない。・・・・(2)
(1)、(2)は矛盾である。
これは宇宙が有限であるとした仮定から生まれる矛盾である。

つまり宇宙が有限であると仮定した瞬間に矛盾は生じたということです。
循環はしていない
 

お礼日時:2010/06/02 03:51

それだと、「宇宙に境界はない」ことの証明にはなっても、「宇宙は有限ではない」ことの証明にはならないと思います。



球の表面は有限ですが、境界はありません。
    • good
    • 0
この回答へのお礼

テニスボールを握ってみなさい。
あなたは自分の手でテニスボールの表面の感触を確かめることができるはず。
それが境界です。

どのようにごまかそうとしたところでごまかすことのできないもの、
それが宇宙の存在であり、その宇宙に対する我々の認識である。
 

お礼日時:2010/06/01 10:34

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q宇宙が無限であることを証明する。

宇宙が無限であることを証明する。



背理法により行う。

仮に宇宙が有限であるとする。

すると適当な大きさの半径R[m]の球体G0により宇宙全体を包み込むことができる。
次に、この球体の半径Rより1m大きな球体G1を考える。
G0とG1を同心としたとき、G1とG0の差分として1mの厚みを持つ球面体(G1-G0)が得られる。
球面体(G1-G0)は球体G0の外部にあるがこれも空間を構成するのでやはり宇宙の一部である。
なぜなら任意の空間は宇宙の部分であるからである。
つまり適当な大きさの半径R[m]の球体G0により宇宙全体を包み込むことができるとした最初の仮定は矛盾を生む。
従って宇宙は有限では有り得ない。
宇宙は無限である。

証明終わり。

ご意見ください

---------------------------------------------------------------------- 
補足:
実を言うと、宇宙が有限か無限かを問うこの問題、最初は哲学の問題であろうと考えまず哲学カテに投稿したのですが、そこでは全く期待外れの結果に終わってしまいました。
どうやら哲学カテの方は完全に宗教漬になっていて神やら仏やらの議論ばかりに終始し真理について語る場所ではないことが分かりました。
そこで同様の問題を物理カテに投稿しました。物理は科学なので少しはマシな回答を頂けるのではないかと期待したからです。
さらに同じ問題を数学カテにも投稿しました。数学であればロジックによりさらにマシな回答が頂けるのではと考えたのです。
さらに同じ問題を天文学にも投稿したわけです。天文学は宇宙について思索する場所ではないが、望遠鏡を覗く場所であり、アンテナを張って宇宙からの電波に耳を傾け宇宙人と交信しようという途轍もなく優雅な生活を送る人々の集団なので何がしかの答えは返ってくるのではと考えたからです。
 

 

宇宙が無限であることを証明する。



背理法により行う。

仮に宇宙が有限であるとする。

すると適当な大きさの半径R[m]の球体G0により宇宙全体を包み込むことができる。
次に、この球体の半径Rより1m大きな球体G1を考える。
G0とG1を同心としたとき、G1とG0の差分として1mの厚みを持つ球面体(G1-G0)が得られる。
球面体(G1-G0)は球体G0の外部にあるがこれも空間を構成するのでやはり宇宙の一部である。
なぜなら任意の空間は宇宙の部分であるからである。
つまり適当な大きさの半径R[m]の球体G0により...続きを読む

Aベストアンサー

その仮定を想像してみると
海の中で球体で水を包みこんで同心の球体でそれを包みこんでいるように見えます。
海の中でやっているのであればその外は海でしかないのでは・・?

海水をまとめて球体に閉じ込めたら
その外側は海以外のものがあるように
宇宙をまとめてもそれ以外のもの(?)があるかもしれないと思うけれど

空間自体を“宇宙”としてしまえば限りは無いとしか言えないのでは、、、

Q宇宙は有限ですか?無限ですか?

宇宙のはては、今どのように考えられてるのですか?
もし有限だとしたら、無空間の状態がわかりません。
いったい宇宙の全体はどうなってるのでしょうか?
いつも気になって夜に考えます。最新情報をお教えください。

Aベストアンサー

Q/宇宙のはては、今どのように考えられてるのですか?

A/現在150億光年先が我々が見ることができる宇宙の果てとされます。
実際にはそれより先は、地球から光の速さより速い速度で遠ざかっているため、その先がどうなっているのかが分からないのですけどね。何故遠ざかっているかというと、宇宙が今このときも膨張しているため。風船をふくらませるように・・・

Q/もし有限だとしたら、無空間の状態がわかりません。

A/何もないのです。厳密に言えば何かはあるでしょう。ただ、宇宙がなければ我々が存在できないため、宇宙の外側にあるものは我々の次元を超越した何かがあるということになります。そして、それは宇宙の内側にいる我々には見えません。

これは、水の中の魚が水の外で生きられないのと同じこと。外側が見える境界に近づけば外が見えますが、その外に出て生きてはいけません。進化しなければ・・・また、外に出るまでは外側の世界に何があるのかは分からないものです。実際に分かるのは外に出た瞬間と外の景色だけです。

Q/いったい宇宙の全体はどうなってるのでしょうか?

A/風船と考えるのが一番分かりやすいかな?
実際にはその風船がいくつもあるとされます。要は、地球が太陽系という恒星系に属し、同じような恒星系が、銀河系の中にいくつもあり、そして、銀河系も地球のある銀河とは別にアンドロメダ銀河など一つの宇宙にたくさんあるように、宇宙も宇宙の外側の世界にたくさんあるのです。
そして、もしかすると無の外側にも同じように無の世界がたくさんあるかもしれません。

これは夜に考えてもいいかもしれませんね。

Q/宇宙のはては、今どのように考えられてるのですか?

A/現在150億光年先が我々が見ることができる宇宙の果てとされます。
実際にはそれより先は、地球から光の速さより速い速度で遠ざかっているため、その先がどうなっているのかが分からないのですけどね。何故遠ざかっているかというと、宇宙が今このときも膨張しているため。風船をふくらませるように・・・

Q/もし有限だとしたら、無空間の状態がわかりません。

A/何もないのです。厳密に言えば何かはあるでしょう。ただ、宇宙がなければ我...続きを読む


人気Q&Aランキング