X,Yは正規分布(0,1)に従う互いに独立な確率変数とする、このとき、X+Y、X/Yの分布は?
  頭悪いです、すみません~

このQ&Aに関連する最新のQ&A

A 回答 (3件)

正規分布の再生性は応用上たいへん重要なので,覚えてくださいね。


コーシー分布の密度関数の導出も確認してください。
密度変換の公式などは,大丈夫ですね。
「X,Yは正規分布(0,1)に従う互いに独」の回答画像3
    • good
    • 2

>X+Yは、N(0,√2) に従います。



すいません。
X+Yは、N(0,(√2)^2) に従います。
の間違いです。
    • good
    • 0

X+Yは、N(0,√2) に従います。



X/Yは、コーシー分布 Cauchy(0,1) に従います。
http://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC% …
    • good
    • 0
この回答へのお礼

ありがとうございます、でも どうしてですか その導き過程を教えていただけないでしょうか

お礼日時:2010/06/15 22:49

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q2つの正規分布を合成したらどうなるのでしょうか?

現在大学の研究の過程で統計学を学ぶ必要がでてきました。僕自身は統計学に詳しくはないので知識のある方の回答は非常に助かります。
どうかご教授よろしくおねがいします。


平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが



例えば互いに独立で

国語の平均点、分散を(μ1,σ1)としての正規分布f(国語)
数学の平均点、分散を(μ2,σ2)としての正規分布f(数学)

とした時の国語と数学の合計得点の分布f(国語+数学)はどのように表せばよいのでしょうか?

もしμ3=μ1+μ2,σ3=σ1+σ2のように平均も分散も和で考えてよいのなら

f(国語+数学)=1/((√2π)σ3) exp-{((x-μ3)^2)/2σ3^2}

が答えだと思っているのですが、それとは別のやり方で



f(国語)=1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}と
f(数学)=1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}をたたみこみ積分すれば答えがでるのではないかと考えています。

しかし、僕の数学の知識ではこれができなくて困っています。ガウス積分の公式を使ったりしなければいけないのではないかとも考えいるのですが行き詰っています。

アドバイスよろしくお願いいたします。

現在大学の研究の過程で統計学を学ぶ必要がでてきました。僕自身は統計学に詳しくはないので知識のある方の回答は非常に助かります。
どうかご教授よろしくおねがいします。


平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが



例えば互いに独立で

国語の平均点、分散を(μ1,σ1)としての正規分布f(国語)
数学の平均点、分散を(μ2,σ2)としての正規分布f(数学)

とした時の国語と数学の合計得点の分布f(国語+数学)はどのように表せばよいのでしょうか?

...続きを読む

Aベストアンサー

> 平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが
一般的には分散をσ^2と表し、標準偏差はその平方根でσと表します。
質問者さんが示された確率密度関数は、平均 μ、分散 「σ^2 」の正規分布のものです。分散と標準偏差の扱いをもう少しきちんとしましょう。

> μ3=μ1+μ2, σ3=σ1+σ2のように平均も分散も和で考えてよいのなら
2つの確率変数 X, Y があり、それぞれの平均と「分散」がμ1, (σ1)^2, μ2, (σ2)^2 であるとします。確率変数 Z を Z = X + Y で定め、Z の平均と「分散」をμ3, (σ3)^2 とすると・・・

μ3 = μ1 + μ2
は、X, Y がどのような分布であっても(X, Y が異なる分布であっても)成立しますし、X, Y が互いに独立であるか否かに関わらず成立します。
また、X, Y が互いに独立であれば(それらの分布によらず)、
(σ3)^2 = (σ1)^2 + (σ2)^2
が成立します。(このとき Z = X + Y の「標準偏差」σ3 は、σ3 = √( (σ1)^2 + (σ2)^2 ) )

> f(国語+数学)=1/((√2π)σ3) exp-{((x-μ3)^2)/2σ3^2}
> が答えだと思っているのですが
X, Y が互いに独立な確率変数であり、共に正規分布に従うならば、X + Y もまた正規分布に従うという事実は確かにありますが、これは正規分布の「再生性」と呼ばれる特別な性質であることを理解していなければなりません。その点、大丈夫ですか?

> それとは別のやり方で
> f(国語)=1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}と
> f(数学)=1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}をたたみこみ積分すれば答えがでるのではないかと考えています。
上述したように、正規分布の再生性を示す必要があるならば、畳み込み積分でそれを示すのが一法なのであって、何も「別のやり方」ではありません。
案ずるより計算するが易しです。式の整理が面倒なだけで、特別な知識は不要です。
f(x) = 1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}
g(x) = 1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}
h(x) = ∫f(t) g(x - t) dt
  = 1/(2πσ1 σ2) ∫exp{ - (t - μ1)^2 / (2σ1^2) - (x - t - μ2)^2 / (2σ2^2) } dt
  epx( ) の指数部を t で平方完成して
  = 1/(2πσ1 σ2) ∫exp{ - (t - 何ちゃら )^2 / (2σ1^2 σ2^2 / (σ1^2 + σ2^2)) - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) } dt
  = 1/(2πσ1 σ2) exp{ - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) } ∫exp{ - (t - 何ちゃら )^2 / (2σ1^2 σ2^2 / (σ1^2 + σ2^2))} dt
  = 1/√(2π(σ1^2 + σ2^2)) exp{ - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) }
  (∵ ∫ exp ( - (t - A)^2 / 2B^2 ) dt = √(2π) B )
μ3 = μ1 + μ2, σ3^2 = σ1^2 + σ2^2 とおけば
h(x) = 1/(√(2π) σ3) exp( - (x - μ3)^2 / 2 σ3^2 )
途中、「何ちゃら」の部分は省略してますので、興味があれば追っかけてみてください。

なお、本件は確率論において、ごくごく基本的な事項です。
もし、これから確率統計を使って研究をされるのならば、このような件を簡単に質問して済ませるのは危うい感じがします。ちゃんと書籍を読まれ、その上で質問されるのが宜しいでしょう。

> 平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが
一般的には分散をσ^2と表し、標準偏差はその平方根でσと表します。
質問者さんが示された確率密度関数は、平均 μ、分散 「σ^2 」の正規分布のものです。分散と標準偏差の扱いをもう少しきちんとしましょう。

> μ3=μ1+μ2, σ3=σ1+σ2のように平均も分散も和で考えてよいのなら
2つの確率変数 X, Y があり、それぞれの平均と「分散」がμ1, (σ1)^2, μ2, (σ2)^2 であるとします。確率変数 Z を Z = X + Y で定め、Z ...続きを読む

Q確率変数の和の問題

確率変数の和の問題です。

2つの確率変数XとYが、互いに独立に一様分布に従うとするとき、
確率変数X+Yはどのような分布の形状になるのでしょうか?

結局、和も一様分布になるのでしょうか?分からなくなってしまいました。
教えて下さい。

Aベストアンサー

連続型でピンとこないなら、離散型で考えてみれば?例えばサイコロを1個振るでしょ。1から6に一様(離散なので一様的)に出るね。2回振って和を取ると、平均3.5*2=7だけど2から12が一様的には出ないよね。
元問題を正確に解くと、確率変数X,Yの確率密度関数をf(x),g(y)として。確率変数Z=X+Yの確率密度関数をh(z)とすると。
h(z)=∫[-∞,∞]f(z-y)g(y)dy または h(z)=∫[-∞,∞]f(x)g(z-x)dx を計算すればよい。
問題よりf(x)=1 (0≦x≦1),g(y)=1 (0≦y≦1) なので 0≦z≦1のときyは0≦y≦z,1<z≦2のときz-1≦y≦1の範囲をとる。
0≦z≦1 のとき h(z)=∫[0,z]f(z-y)g(y)dy=∫[0,z]1・1dy=z
1<z≦2 のとき h(z)=∫[z-1,1]f(z-y)g(y)dy=∫[z-1,1]1・1dy=1-(z-1)=2-z

Q正規分布の加法性について

すいません。統計学初学者です。
正規分布の加法性でわからないことがございます。

1.N(u1, σ1^2) + N(u2, σ2^2) → N(u1 + u2, σ1^2+σ2^2)
2.N(u1, σ1^2) - N(u2, σ2^2) → N(u1 - u2, σ1^2+σ2^2)

正規分布を足しても引いても、
平均はそれぞれ、足されるあるいは引かれますが、
なぜ、分散だけはどちらも足されるのでしょうか?
分散は引くことは出来ないものなのでしょうか?

よろしくお願いいたします。

Aベストアンサー

>分散を引いたときと足したとき、分散の値は同じ。

根本的な誤解があります。質問者さんが参考にしている本も私たちも分散の引き算を、
さらには分布の引き算を論じているわけではありません。2つの確率変数X,Yの和、差の
結果として(X-Y)の分布、分散がどうなるかを論じています。この二つは全く違う議論です。

確率変数は何らかの分布に従ってはいても実態は具体的な数字です。
サイコロの出目であったり、#3で例としてあげたコインの枚数であったり、
工場で作れらる製品の不良品の数であったり様々ですがあくまでただの数字であり、
分布では有りません。ただ、その出現頻度が何らかの法則に従っているだけです。
この具体的な数字、例えば大きなサイコロと小さなサイコロを振って大きいサイコロの
出目から小さいサイコロの出目を引くといったことを考えるのが確率変数の引き算で、
その結果がどのような分布に従うことになるかを今、論じているのです。

さらに分かり易い(?)例を考えてみると、A社の200g入り牛乳の実重量が正規分布(203,1)に
従っているとします。ここから2本ずつ取り出してそれぞれの重量の差を求めてみます。
その結果が(0,0)、つまり全部0、どれも差がなかったことになると思いますか?
重いものから軽いものを引くこともあるし、軽いものから重いものを引くこともあり
結果として差は正規分布(0,2)に従うことになりますよ、と言っているのが参考書ですし、
回答者みなさんなのです。

もちろん、分散を引く計算を問題にすることも出来ます。
重量が正規分布に従うコップが有ってここに重量が正規分布(100,5)に従う水を
入れたら全体の重さは正規分布(120,8)に従った。元のコップの分布を求めよ。
これなら分散を引いて答えは(20,3)になります。しかしこれは確率変数の差を
求めているわけではないのですよ。

>分散を引いたときと足したとき、分散の値は同じ。

根本的な誤解があります。質問者さんが参考にしている本も私たちも分散の引き算を、
さらには分布の引き算を論じているわけではありません。2つの確率変数X,Yの和、差の
結果として(X-Y)の分布、分散がどうなるかを論じています。この二つは全く違う議論です。

確率変数は何らかの分布に従ってはいても実態は具体的な数字です。
サイコロの出目であったり、#3で例としてあげたコインの枚数であったり、
工場で作れらる製品の不良品の数であったり様々...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q加重平均と平均の違い

加重平均と平均の違いってなんですか?
値が同じになることが多いような気がするんですけど・・・
わかりやす~い例で教えてください。

Aベストアンサー

例えば,テストをやって,A組の平均点80点,B組70点,C組60点だったとします.
全体の平均は70点!・・・これが単純な平均ですね.
クラスごとの人数が全く同じなら問題ないし,
わずかに違う程度なら誤差も少ないです.

ところが,A組100人,B組50人,C組10人だったら?
これで「平均70点」と言われたら,A組の生徒は文句を言いますよね.
そこで,クラスごとに重みをつけ,
(80×100+70×50+60×10)÷(100+50+10)=75.6
とやって求めるのが「加重平均」です.

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q確率変数が独立であることの証明

「3つの確率変数 x1,x2,x3 が独立 ⇒ u=x1+x2 と x3 は独立 」

という直感的には明らかな事実を厳密に証明したいのですが、
以下の証明で日本語表現も含めておかしな点はあるでしょうか?

(証明)
x1,x2,x3は独立なので、同時確率密度関数 P(x1,x2,x3) は
それぞれの密度関数の積で以下のように表される。

P(x1,x2,x3)=Q(x1)・R(x2)・S(x3)  (※)

ここで、u=x1+x2 とし、uとx3の同時確率密度関数を φ(u,x3) とするとφ(u,x3)は(※)の式においてx1とx2の和がuになる組み合わせの確率の合計となる。
よって、

φ(u,x3)=∫[-∞~+∞]Q(u-t)R(t)S(x3)dt

=∫[-∞~+∞]Q(u-t)R(t)dt・S(x3) となる。

これは、φ(u,x3)がuの関数と、x3の関数の積となることを示しており、
uとx3が独立であることが示された。
                            証明終

よろしくお願いします。



 

「3つの確率変数 x1,x2,x3 が独立 ⇒ u=x1+x2 と x3 は独立 」

という直感的には明らかな事実を厳密に証明したいのですが、
以下の証明で日本語表現も含めておかしな点はあるでしょうか?

(証明)
x1,x2,x3は独立なので、同時確率密度関数 P(x1,x2,x3) は
それぞれの密度関数の積で以下のように表される。

P(x1,x2,x3)=Q(x1)・R(x2)・S(x3)  (※)

ここで、u=x1+x2 とし、uとx3の同時確率密度関数を φ(u,x3) とするとφ(u,x3)は(※)の式においてx1とx2の和がuになる組み合わせの確率の合計とな...続きを読む

Aベストアンサー

ヨイと思います。

Q集積点が、まったく分かりません!!

集積点の意味がまったくわかりません。詳しく教えてください。

Aベストアンサー

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるようなx以外のAの要素が存在するような点」
と言い替えられます。

直観的な言い方をすれば、x∈XがAの集積点であるとは
「xのどんな近くにも(x以外の)Aの点がある」
と言う条件をみたすような点のことです。

ついでに集積点との対比で孤立点も覚えてしまいましょう。
集積点とはある意味で対照的なものが孤立点です。
すなわちx∈XがAの孤立点であるとは
xがAの要素であり  …(S1)
かつxのある近傍とAの共通部分にx以外のAの点が含まれない。…(S2)
ような点のことです。
Xが距離空間なら、これは
「あるεに対してxからの距離がε以下であるようなAの要素はxだけであるような点」
となります。

注意していただきたいのはx∈AであることはxがAの集積点であるためには
必要でも十分でもないということです。
xがAの点であってもそれが孤立点ならxは集積点ではないし、Aの点でないような
Aの集積点も存在します。
しかし孤立点と言う概念は集合Aの要素に対して与えられる概念ですから、Aに
属さない点が(S2)の条件だけ満たしてもそれをAの孤立点とは呼びません。

あとは距離空間(ユークリッド空間)での簡単な例を挙げておきますのでイメージをつかんで下さい

例(1)Xを2次元ユークリッド空間として
A={(x,y)∈X| x^2 + y^2 < 1} ∪ (2.0)
とします。つまりAは原点中心半径1の開円盤と点(2,0)の和集合です。
するとAの集積点(の集合)は
{(x,y)∈X| x^2 + y^2 ≦ 1}
すなわち原点中心半径1の開円盤とその境界となります。
点(2,0)は孤立点なので集積点ではありません。

例(2)Xを2次元ユークリッド空間として
A={(x,y)∈X| y = sin(1/x) ,x∈(0,∞) }
とします。Aの集積点(の集合)はA自身と集合
B={(0,y)∈X| y∈[-1,1] }
の和集合です。

例(3)Xを1次元ユークリッド空間として
A= { 1/n | n=1,2,…}
とします。原点{0}はAの集積点です。しかしA自身の点はすべて孤立点です。

例(4)Xを1次元ユークリッド空間として
Aは開区間(0,1)の有理点。すなわち
A= { x∈(0,1)|xは有理数 }
とします。Aの集積点(の集合)は閉区間[0,1]です。

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるよう...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Qeのマイナス無限大乗

lim(t→∞) 1-e^(-t/T)
T:定数

というのがあって、極限値が1になることは手計算で分かったのですが、
数学的に1になる理由が分かりません。

e^(-∞)=0になる理由を数学的に教えてください。

Aベストアンサー

e^(-n) = (1/e)^n
であり、
0<|1/e|<1
だから


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報