【先着1,000名様!】1,000円分をプレゼント!

任意の自然数m,nについてm^2+n^2=p^2+q^2を満たすような正の有理数p,qは
以前の質問↓
http://oshiete.goo.ne.jp/qa/6158436.html
の際に、a^2+b^2=c^2≠0を満たす整数a,b,cを用いて
 p=(am+bn)/c, q=(an-bm)/c
と表せることを教えていただきました。

これにより求められたp,qは一般には整数ではないですが
 m=(ap-bq)/c, n=(bp+aq)/c
が成り立ちます。

このことから思ったのですが、x,yが“キリの悪い有理数”のとき
a,b,cを上手く選んでやれば
 p=(ax-by)/c, q=(ax+by)/c
により“よりキリの良い有理数”になると思います。
全てのx,yの組み合わせでは不可能かもしれませんが
可能な組み合わせだった場合、x,yが与えられたときに
a,bをどのようにして選べば良いのでしょうか?

※ここで“キリの悪い有理数”とは、
有理数を互いに素な整数を用いた分数で表したときに
素因数が分母にたくさん含まれている数を指すこととします。
“よりキリの良い有理数”とは同様に分母に含まれる
素因数の種類が“キリの悪い有理数”より少ないものとします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

何を仰っているのか意味不明です

    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


人気Q&Aランキング