マンガでよめる痔のこと・薬のこと

3群の対応のある検定についてお願いします。

3つの薬の差を、同一対象で調べています。
文献では多重検定ではなく、
まず3群間で比較し、差があるものだけ各群間で比較を行っているようです。色々調べて、

・間隔(血圧値・正規分布)→3群(one-way ANOVA)→2群間(paired-t)
・順序(副作用程度1.2.3段階)→3群(フリードマン検定)→2群間(ウィルコクソンの符号付順位検定)
・名義(副作用あり・なし)→3群(コクランのQ検定)→2群間(マクネマー検定)

と考えたのですが、文献で対応あるなしにかかわらず、
Wilcoxon順位和検定やCochran-Mantel-Haenszel検定、ビアソンχ二乗, Fisher exact testなどが使われていて自信がなくなりました。

上の方法でよいか、アドバイスお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

こんばんわ。



>間隔尺度でもフリードマン、ウィルコクソンが望ましいのは、
>正規性・等分散性が仮定できない時と考えて良いでしょうか。
そうですね。しかし厳密には上記のノンパラの検定は位置が異なるかを検討するものですので、本質的な不等分散は望ましくありません。外れ値に起因する数値上の不等分散なら問題ありませんが。対応のあるデータでそれほど不等分散になることもないかもしれませんね。そもそも本質的に不等分散なデータを比較していいのかという考え方もあります。

>あと、マクネマー検定で4以下の項目があるのですが、
>カイ二乗の時のFisherのように、二項検定などに変更する必要があるのでしょうか。
そうですねぇ。。各セルがいくら以下ならばexactな検定をしなければいけないという明確な基準はないかもしれませんが、二項検定のほうが無難かも知れませんね。二項検定のほうが保守的でしょうからクレームをつけられることはないと思います。
    • good
    • 0
この回答へのお礼

返信が遅くなり申し訳ございません。
お返事を参考に勉強し、なんとか検定を行うことができました。
色々調べても分からず、すごく困っていましたので、
とてもご丁寧なアドバイス、大変分かりやすく、心から感謝しています。
本当にありがとうございました。

お礼日時:2010/09/29 19:17

こんにちは。



概ね質問者さんの理解でいいとは思いますが、フリードマン、ウィルコクソンは別に間隔尺度でも利用可能です。というより、間隔尺度でも歪んだ分布ではこちらの方が望ましいこともあります。

また、間隔の3群がone-way ANOVAというのはちょいと違います。
そもそも、○-way ANOVAというのは結構ミスリーディングな言葉でして、ここでは○-way ANOVAという言葉を無理やり使うとするとtwo-way ANOVAを使います。
もっと正確に言いますと、繰り返し測定型分散分析(Repeated ANOVA)あるいは混合効果モデル(Mixed model)(どちらも結果は一緒になると思いますが)を用いる必要があるでしょう。
別にフリードマンを用いても良いです。

対応のあるデータに順位和検定、CMH検定、カイ二乗、Fisherなどを用いるのは間違いだと思います。
    • good
    • 0
この回答へのお礼

とても分かりやすい回答ありがとうございます。
混乱していたので本当にすっきりしました。

ANOVAは対応がある場合、repeated measures ANOVAということも良く分かりました。
間隔尺度でもフリードマン、ウィルコクソンが望ましいのは、
正規性・等分散性が仮定できない時と考えて良いでしょうか。

あと、マクネマー検定で4以下の項目があるのですが、
カイ二乗の時のFisherのように、二項検定などに変更する必要があるのでしょうか。

重ねての質問で申し訳ありませんが、ご助言頂けますとうれしいです。

お礼日時:2010/09/24 20:51

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q3群間の検定について(カイ二乗検定→事後比較)

A 群、B 群、C 群の 3 群をカイ二乗検定により同時に比較し、少なくともどれかの群は多の群と異なることが分かったとします。

その後それぞれの群間(A vs B、B vs C、C vs A)で再びカイ二乗検定を行い、A 群のみが B、C 群と異なることが分かった、といった解析を行いました。

このような解析方法は統計学的に妥当なものでしょうか(間違った方法ではないでしょうか)?
なお、それぞれの群間での対比較の際はボンフェローニ法により有意水準を補正してあります。

Aベストアンサー

サンプルサイズが極端(例えば A は 2 つしかデータがない、など)でなければ、妥当だと思いますよ。

Q割合の差の検定について教えて下さい

統計学初心者です。割合の差の検定について教えて下さい。

χ2乗検定を行えば、2x2の分割表の場合、各群での割合の差について検定できる事は理解しております。

2x3、2x4の分割表の場合、どの群との関係に差があるのか、明確にわかる検定はあるのでしょうか?
    イベント有り イベントなし
薬剤A  10     15
薬剤B  30     38
薬剤C  78     10
薬剤D  90     29
などの場合です。薬剤A、B、C、Dの間のどこかに違いがある事は、χ2乗検定で言えるかと思いますが。各群の中で(ex;薬剤Aと薬剤B、薬剤Cと薬剤D)違いあると言える検定はあるのでしょうか?

教えて頂けると幸いです。

Aベストアンサー

http://homepage2.nifty.com/nandemoarchive/toukei_hosoku/cross_table_analyse.htmにあるクロス表における多重比較のk*2分割表のコンテンツを見ればよろしいかと。

要するに、カイ自乗検定を繰り返し行っても良いけど、設定する有意水準はその度に調節しなさいよ、ということです。

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Qカイ二乗検定とマクネマー検定について

例えば、肺がんの発生と喫煙の関係の研究をするために、ケースコントロール研究をする場合、ケースとコントロールを性や年齢でマッチングした場合は、ピアソンにカイ二乗検定を使用できないのはなぜなのでしょうか?
清書にそのような時はマクネマー検定を使うのがのぞましいとあるのですが・・・・
統計学の知識が少なく、その理由がわかりません。
よろしければ、教えてください。

Aベストアンサー

基本的にはPearsonのχ2検定は行側と列側に対応のない場合、McNemar検定は対応のある場合に用いられる方法だからということですが、なぜ対応のない場合の方法を、形式的には適用できるのに、そのまま用いてはいけないかということについてお話します。

ケースコントロール研究においてマッチングを行った場合、マッチング要因が交絡要因になっていると(実際においては程度の差はあれほとんどそうだと思いますが)マッチングを考慮しない解析では結果にバイアスが生じる事が知られています。これはケースコントロール研究の場合、コントロール群における暴露割合が対象集団における暴露割合を表すと考えることに起因します。マッチングを行うとマッチング要因が対象集団の分布とは異なったものになってしまうのです。極端な例では、暴露要因と完全に相関する要因、即ち暴露要因そのものでマッチングを行い、マッチングを考慮しないで解析すると暴露要因のオッズ比の推定値は必ず1になります。逆に暴露要因と全く相関のない要因でマッチングを行った場合はバイアスは生じません。

このような理由から、ケースコントロール研究ではマッチングを行った場合は必ずマッチングを考慮した解析を行うべきとされます。一般的には層別解析のMantel-Haenszel法が応用され、1:1マッチングの場合は結果的にMcNemar検定と同一になりますので、できればMantel-Haenszel法を学習された方が応用が利くかと思います。

念のため申し上げると、ご質問の内容とχ2分布の適用可能性は関係ありません。検定したい帰無仮説(今の場合は対応のあるデータの暴露要因に関するオッズ比が1に等しいという)、に応じた検定統計量を用いなければならないということです。その統計量がどのような分布に従うかはまた別の問題になります。Pearsonのχ2検定、McNemar検定、Mantel-Haenszel法のいずれも検定統計量が帰無仮説の下で近似的にχ2分布に従うことを利用していますし、最近の統計ソフトではχ2近似を用いずに直接確率や経験分布関数といった方法を用いてP値を求めることもできるようになっているものもあります。

基本的にはPearsonのχ2検定は行側と列側に対応のない場合、McNemar検定は対応のある場合に用いられる方法だからということですが、なぜ対応のない場合の方法を、形式的には適用できるのに、そのまま用いてはいけないかということについてお話します。

ケースコントロール研究においてマッチングを行った場合、マッチング要因が交絡要因になっていると(実際においては程度の差はあれほとんどそうだと思いますが)マッチングを考慮しない解析では結果にバイアスが生じる事が知られています。これはケースコント...続きを読む

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Qカイ二乗検定と下位検定 SPSS

質問文が長く、そして多く大変恐縮ですが、自分でいろいろ調べていてもなかなか解答が見つかりません。どなたかアドバイスをお願いしますm(_ _)m

回答パターンが4つある質問(例えばア・イ・ウ・エ)をして、それぞれに対して得られた回答数が期待度数を有意に上回っているかを検定するのはカイ二乗ですよね?

では下位検定としてア・イ・ウ・エのどれがどれを(有意に)上回っているかを調べるためには、観測度数を目で見るだけはダメですか?竹原卓真(2007)「SPSSのススメ」(p.202)には「ライアンの方法」や「ボンフェローニの方法」が下位検定の方法として紹介されています(確立した手法ではないようですが)。

ボンフェローニは分散分析の下位検定で多重比較をする際などに有意確率の補正をする方法だと思っていました。SPSSで上記のようなデータを用いてカイ二乗検定を行った後にボンフェローニ法を使った下位検定をするにはどうしたらいいのでしょうか?どこのタブをクリックしてもボンフェローニの「ボ」の字も出てきません。シンタックスの入力が必要ですか?またテューキーは使えますか?

よろしくお願いしますm(_ _)m

質問文が長く、そして多く大変恐縮ですが、自分でいろいろ調べていてもなかなか解答が見つかりません。どなたかアドバイスをお願いしますm(_ _)m

回答パターンが4つある質問(例えばア・イ・ウ・エ)をして、それぞれに対して得られた回答数が期待度数を有意に上回っているかを検定するのはカイ二乗ですよね?

では下位検定としてア・イ・ウ・エのどれがどれを(有意に)上回っているかを調べるためには、観測度数を目で見るだけはダメですか?竹原卓真(2007)「SPSSのススメ」(p.202)には「ライアンの方法...続きを読む

Aベストアンサー

こんにちは。

既にご存じの通り「『二条件の有意差検定』を単純に繰り返す」ことに問題がありますが,多重比較法とは,これを「何らかの工夫を行う」ことによって使用可能にする方法の【総称】です。この工夫の方法として,(1)有意水準を調整するタイプ,(2)多重比較用に調整された確率分布を使うタイプ,(3)統計量を調整するタイプに分類することができます。
ボンフェローニ法は(1)の直接有意水準を調整するタイプのことですが,有意水準を調整するのでよいので,お馴染みの分散分析の後の多重比較の他にも,順序尺度データに対する要因分析(クラスカル・ウォリス検定)の後の多重比較にも,そしてχ2検定の後の多重比較にも使える非常に汎用性の高いものです。

さて,ボンフェローニ法はどのような比較ペアを設定するかによって有意水準の計算結果が異なります。多くの場合は総比較を行いますので,

 個別の調整された有意水準=全体の有意水準÷全ての比較ペア

となります。しかし,これは「事前にどのような比較ペアをするか」決まっていない場合です。よって,何らかの「明確な根拠」(○○という理由により,多重比較によって検討を行いたい比較は△△だ)がきっちりと示せるのであれば,全ての比較ペアをするひつようはありません。もし3ペアだけであるならば,

 個別の調整された有意水準=全体の有意水準÷3(必要なペア数)

によって計算されるものでも何ら構いません。

ただし,重要なので繰り返しますが,あくまでも「明確な根拠」を提示できる場合のみです(何となくの思いつきでは駄目で,かなりの理論武装,下手をすれば先行研究を引用しながら,をしなければなりません)。この辺りで,上手く根拠を示せない&面倒という理由により,本当は実際に調べたいのは総比較ペアではないけれども,仕方ないので総比較ペアで検討を行う,という状況はごろごろあります。

こんにちは。

既にご存じの通り「『二条件の有意差検定』を単純に繰り返す」ことに問題がありますが,多重比較法とは,これを「何らかの工夫を行う」ことによって使用可能にする方法の【総称】です。この工夫の方法として,(1)有意水準を調整するタイプ,(2)多重比較用に調整された確率分布を使うタイプ,(3)統計量を調整するタイプに分類することができます。
ボンフェローニ法は(1)の直接有意水準を調整するタイプのことですが,有意水準を調整するのでよいので,お馴染みの分散分析の後の多重比較...続きを読む

QT検定とMann-WhitneyのU検定の使い分け

ある2郡間の平均値において、統計的に有意な差があるかどうか検定したいです。ちなみに、対応のない2郡間での検定です。

T検定を行うには、ある程度のサンプル数(20以上程度?)があった方が良く、サンプル数が少ない場合には、Mann-WhitneyのU検定を行うのが良いと聞いたのですが、それは正しいのでしょうか?
また、それが正しい場合には実際にどの程度のサンプル数しかない時にはMann-WhitneyのU検定を行った方がよろしいのでしょうか?
例えば、サンプル数が10未満の場合はどうしたらよろしいのでしょうか?

また、T検定を使用するためには、正規分布に従っている必要があるとのことですが、毎回正規分布に従っているか検定する必要があるということでしょうか?その場合には、コルモゴルフ・スミノルフ検定というものでよろしいのでしょうか?

それから、ノンパラメトリックな方法として、Wilcoxonの符号化順位検定というものもあると思いますが、これも使う候補に入るのでしょうか。

統計についてかなり無知です、よろしくお願いします。

Aベストアンサー

結局ですね、適切な検定というのは適切なp値が得られるということなんですよ。適切なp値というのは第1種の過誤と第2種の過誤をなるべく低くするようにする方法を選ぶということなのですね。

従来どおりの教科書には「事前検定をし、正規性と等分散性を仮定できたら、、、」と書いていありますが、そもそも事前検定をする必要はないというのが例のページの話なのです。どちらが正しいかというと、どちらも正しいのです。だから、ある研究者はマンホイットニーのU検定を行うべきだというかもしれませんし、私のようにいかなる場合においてもウェルチの検定を行う方がよいという者もいるということです。

ややこしく感じるかもしれませんが、もっと参考書を色々と読んで分析をしていくうちにこういった内容もしっくり来るようになると思います。

QコクランのQ検定はなぜ多変量解析ではないのか、について教えてください

卒論でSPSSを使うことになったので、本を一生懸命読んでいるのですが、分からないことが…(教授も素人で聞けない^^;)

理解した・分かったつもりのことは、
私が集めたデータは全て質的データってこと、
SPSSができることは大きく分けると
関係を調べるのか、差を調べるのかってこと、
変数の数によって検定方法が異なること。

で!その変数ですが、、、
多変量解析って、3変数以上のものの分析を行うんですよね?
コクランのQ検定も3変数以上だと思うのですが、
これは多変量解析にならないのでしょうか…?
変数の定義が分かってないのかもしれないですが(; ;)
あ、念のためですが、この2つは差を調べる為の方法ですよね?

長くなりましたが、どなたか教えてください!

Aベストアンサー

こんにちは。これは多変量解析における変数の考え方と,コクランのQ検定などの有意差を調べる場合の変数の考え方に違いがあるためです。

コクランのQ検定は,例えばA条件,B条件,C条件であるカテゴリがあるかどうかを調べる場合に使われます。これは「『条件の違い』によって『カテゴリの有無』があるか」を調べることを意味します。これをもう少し整理すると次のようになります。

 条件の違い【原因/独立変数】
   → カテゴリの有無【結果/従属変数】

これを見て下さい。A・B・C条件は「条件の違い」という一つの独立変数としてまとまります。つまり質問者さんが疑問に思っている「コクランのQ検定の三変数以上」というのは整理の仕方によって,独立変数という一つの変数にまとめることができるのです。一般的に「カテゴリの有無」という従属変数を入れないで,変数が複数かどうかが問題となります。その意味では,コクランのQ検定は(原因が)一変数の分析法となりますね?

さて,多変量解析における三変数以上というのは,このような整理したバージョンの変数が三つ以上ということを意味します。そして,この意味においてコクランのQ検定は多変量解析には含まれません。少なくとも一般的な分類では含まれません。

> あ、念のためですが、この2つは差を調べる為の方法ですよね?

「この2つ」というのは何でしょうか? 一つはコクランのQ検定で,これは差を調べる検定法です。もう一つというのは多変量解析のことでしょうか? 多変量解析とは特定の統計解析法を意味するのではなく,多くの変数を分析する統計解析法の総称です。No1さんが挙げられているように多くの手法がこの中に含まれます。その手法は差を調べる方法もあれば,関係を調べる方法もあります。しかし一般的には関係を調べる手法が多いでしょう。

こんにちは。これは多変量解析における変数の考え方と,コクランのQ検定などの有意差を調べる場合の変数の考え方に違いがあるためです。

コクランのQ検定は,例えばA条件,B条件,C条件であるカテゴリがあるかどうかを調べる場合に使われます。これは「『条件の違い』によって『カテゴリの有無』があるか」を調べることを意味します。これをもう少し整理すると次のようになります。

 条件の違い【原因/独立変数】
   → カテゴリの有無【結果/従属変数】

これを見て下さい。A・B・C条件は「条件の...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む


人気Q&Aランキング