痔になりやすい生活習慣とは?

微積の授業中に2x^2+4xy+5y^2=6のグラフを書けという小テストがあったのですが、解法がほとんど分かりませんでした。
最近偏微分を学んだことから、x,y,xx,xy,yx,yyでの偏微分を求めて、それらを用いて解くのだと思うのですが、単に極値などが分かるだけで、これだけではグラフをどう描いていのか分かりませんでした。
また、グラフは式を平方完成してみた感じから、楕円になるのではないかと想像しています。

解法をご存知の方、解法の手順を教えていただけないでしょうか?
グラフを書くためにはまず、何をして次にはこうしてというように教えていただけるとありがたいです。
宜しくお願いします。

A 回答 (5件)

#1-#3です。



座標系の回転で
長軸、短軸がy=2xとy=-x/2の楕円(1/6)X^2+Y^2=1またはX^2+(1/6)Y^2=1になることを示しましたが、折角辺微分を習われたことなので、
これを使って、斜めの楕円のxの範囲(xの最大値と最小値)やyの範囲(yの最大値と最小値)を求めることが出来ます。
2x^2+4xy+5y^2=6 …(1)
xで偏微分して
4x+4y=0 ⇒ y=-x …(2)
(1)と(2)を連立にして解けば、(x,y)=(√2,-√2),(-√2,√2)
これから x=√2のときyの最小値-√2, x=-√2のときyの最大値√2 であることが分かります。
また(1)をyで偏微分して
 4x+10y=0 ⇒ 2x+5y=0 …(3)
(1)と(3)を連立にして解けば (x,y)=(-√5,2/√5),(√5,-2/√5)
これから y=-2√5のときxの最大値√5, y=2/√5のときxの最小値-√5 であることが分かります。

#なせこのようにxやyの最大値、最小値(極大値、極小値)が出るかを考えて見てください。
楕円のグラフに(2)と(3)のグラフ(水色の直線)を描き込んでおきますのでグラフ的な意味を考えて見ると良いでしょう。
「2次曲線のグラフ」の回答画像5
    • good
    • 1
この回答へのお礼

度々ご解答ありがとうございます。
偏微分によってx,yの最大値や最小値、つまりxとyの範囲が分かるんですね。
参考にさせていただきます。
本当にありがとうございました!

お礼日時:2010/11/27 00:08

2x^2+4xy+5y^2=6  x,y に -x,-yを代入しても変わらないので、曲線は原点対称。


5y^2+4xy+(2x^2-6)=0
yの実数条件から、  (2x)^2-5(2x^2-6)≧0 より -√5≦x≦√5
x=-√5 のとき y=-2*(-√5)/5=2/√5 , x=√5 のとき y=-2*√5/5=-2/√5
2x^2+2*2y*x+(5y^2-6)=0
xの実数条件から、  (2y)^2-2(5y^2-6)≧0 より -√2≦y≦√2
y=-√2 のとき x=-2(-√2)/2=√2 , y=√2 のとき x=-2*√2/2=-√2
4x+4y+(4x+10y)dy/dx=0
dy/dx=-2(x+y)/(2x+5y) →  (x+y)(2x+5y)>0 で減少、(x+y)(2x+5y)<0 で増加
x+y=0 , 2x+5y=0 より (x,y)=(0,0)
これは曲線上に無いので、特異点(接線の引けない点)は無し。
y''(2x+5y)^2/(-2)=(1+y')(2x+5y)-(x+y)(2+5y')
=3y-3xy'=3y-3x{-2(x+y)/(2x+5y)}=3{y(2x+5y)+2x(x+y)}/(2x+5y)
=3(2x^2+4xy+5y~2)/(2x+5y)=3*6/(2x+5y)
y''=(-2)*3*6/(2x+5y)^3 → 2x+5y>0 で 上に凸 、2x+5y<0 で 下に凸
    • good
    • 0
この回答へのお礼

ご解答ありがとうございます。
これを参考にグラフが書けるかやってみようと思います。

お礼日時:2010/11/27 00:05

#1,#2です。



A#2にグラフを添付するのを忘れたので改めて添付しておきます。グラフの説明はA#2を見てください。
「2次曲線のグラフ」の回答画像3
    • good
    • 0
この回答へのお礼

ご丁寧にグラフを添付していただきありがとうございます。
助かります。

お礼日時:2010/11/27 00:19

#1です。



A#1での座標軸を回転した時のグラフの図を添付します。
青の座標軸が回転後の座標軸で正の方向へtanθ=2のθだけ回転したときの
X軸はy=2x,Y軸はy=-x/2になり、元のxy座標軸では傾いた楕円が、回転した座標系では楕円の標準形のグラフになります。
また青の座標軸で負の方向にtanθ=-1/2のθだけ回転したときの
X軸はy=-2/2,Y軸はy=2xになり、元のxy座標軸では傾いた楕円が、回転した座標系では楕円の標準形のグラフになります。

自分で座標軸の回転の計算をフォローしてやってみて下さい。
    • good
    • 1

座標軸xyを時計回りにθだけ回転した時、座標軸XYになるとすれば


2x^2+4xy+5y^2=6…(1)は、
XY座標軸における座標(X,Y)で表したときXYの積の項の係数が0になるような回転角θを
選べば、XY座標系でのグラフの方程式は2次曲線の標準形に出来ます。
座標軸の回転は数学で習っていませんか?
(x,y)⇔(X,Y)の回転移動の関係式から
x=Xcosθ-Ysinθ、y=Xsinθ+Ycosθ…(2)
(2)を(1)に代入してXYの項の係数=0とおいて回転角θを求めると
tanθ=2、またはtanθ=-1/2 が出てきます。

■θ=tan^-1(2)の時
X^2+(1/6)Y^2=1 …(3)
これは楕円で短軸半径a=1,長軸半径b=√6、中心(0,0)となります。
標準形になったので簡単にグラフが描けるでしょう。
新しいX軸は元の座標系の直線y=2x、Y軸は元の座標系の直線y=-x/2になります。

■θ=-tan^-1(1/2)の時
(1/6)X^2+Y^2=1 …(4)
これは楕円で長軸半径a=1,短軸半径b=1、中心(0,0)となります。
標準形になったので簡単にグラフが描けるでしょう。
新しいX軸は元の座標系の直線y=-x/2、Y軸は元の座標系の直線y=2xになります。
    • good
    • 0
この回答へのお礼

お返事遅れました。
このたびはご解答ありがとうございます。
座標軸の回転を学んでいないのでしっくりこない感じです。
回転角θを求めてtanθが出たのちになぜ楕円の式が求まったのか、新しい軸の式が得られたのか考えてみましたがわかりません。
これらが分かればとても分かりやすい解法なのでぜひ覚えておこうと思うのですが。
また解答いただけるとありがたいです。

お礼日時:2010/11/27 00:17

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q2x^2-2xy+y^2=2のグラフ

2x^2-2xy+y^2=2のグラフのグラフでどんな感じになりますか?
2x^2+y^2=2なら楕円になりますが、
-2xyをどう処理すればよいのでしょうか?

Aベストアンサー

 x=x'cosθ-y'sinθ
 y=x'sinθ+y'cosθ
とおいて、元の方程式を原点軸周りでθだけ回転させたグラフを作ってください。

 そのとき、方程式が
  Ax'^2+By'^2+Cx'y'=2
の形になります。
 ここで、θをうまくとってCが0になるようにします。(つまりxyの項を消す。)
 そのようなθをC=0の式から求めて、AとBを求めます。
 こうして得られたものが、Ax'^2+By'^2=2のグラフを原点を中心にして-θだけ回転させたものが、元のグラフになっているということが分かります。

 あとは、Ax'^2+By'^2=2のグラフを-θ回転させれば描画ができます。

Qこれはなぜ楕円なんですか?

x^2+xy+y^2-1=0
これはなぜ楕円になるんですか?

(x^2)/a^2+(y^2)/b^2=1の形にならないんですけど、なぜ楕円なんですか?

Aベストアンサー

>なぜこの形(x^2+xy+y^2-1=0)を見て45°回転していると分かるんでしょ>うか?

元の式がx,yの対称式、つまりxとyを入れ替えたときもとの式と同じ式になること。
これはx軸とy軸を入れ替えても同じグラフになる、ということ。つまり直線y=xについて対称であることを示しています。なので1次変換を用いて45°回転させてみればいいとわかります。

なお1次変換についてはたとえば

http://www.geisya.or.jp/~mwm48961/kou2/linear_image3.html

あたりを参照のこと。

Qy=x^(1/x) の 微分

y=x^(1/x) の微分を教えてください。
簡単な問題なのにすいません。

Aベストアンサー

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log|y|)'
= y' / y
= y' / { x^(1/x) }

となります。

(log|y|)' = { (1/x)log|x| }'
→y' / { x^(1/x) } = { (1/x)log|x| }'

この両辺に{ x^(1/x) }をかけると

y' = { x^(1/x) } × { (1/x)log|x| }'

となります。
なので{ (1/x)log|x| }'の計算をすればy'が求まります。
積の微分で解いてください。

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log...続きを読む

Q二次関数 x^2-y^2=4グラフの書き方

二次関数 x^2-y^2=4グラフの書き方を分かり易く教えてください。
御願いします。

Aベストアンサー

(1)数値計算が好きな人、ITエンジニアは

y=±√(x^2-4)

と変形して

x=2からx=10までを0.1刻みでy(正負あり)を計算し、プロットする。

y軸に対象におり返す。

(2)受験に強くなるには

標準形の双曲線

x^2/a^2-y^2/b^2=1

はy=±bx/a

を漸近線として

(±a,0)を通る、左右、上下(x軸、y軸)対称な図形

であることを用いる。一発必中。受験は反射神経。

Q分子結晶と共有結合の結晶の違いは?

分子結晶と共有結合の結晶の違いはなんでしょうか?
参考書を見たところ、共有結合の結晶は原子で出来ている
と書いてあったのですが、二酸化ケイ素も共有結合の
結晶ではないのですか?

Aベストアンサー

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素SiO2の場合も
Si原子とO原子が共有結合し、この結合が立体的に繰り返されて
共有結合の物質というものをつくっているのです。
参考書の表現が少しまずかったのですね。
tomasinoさんの言うとおり、二酸化ケイ素も共有結合の結晶の1つです。

下に共有結合の結晶として有名なものを挙げておきます。

●ダイヤモンドC
C原子の4個の価電子が次々に4個の他のC原子と共有結合して
正四面体状に次々と結合した立体構造を持つのです。
●黒鉛C
C原子の4個の価電子のうち3個が次々に他のC原子と共有結合して
正六角形の網目状平面構造をつくり、それが重なり合っています。
共有結合に使われていない残りの価電子は結晶内を動くことが可能なため、
黒鉛は電気伝導性があります。
(多分この2つは教科書にも載っているでしょう。)
●ケイ素Si
●炭化ケイ素SiC
●二酸化ケイ素SiO2

私の先生曰く、これだけ覚えていればいいそうです。
共有結合の結晶は特徴と例を覚えておけば大丈夫ですよ。
頑張って下さいね♪

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素Si...続きを読む

Q集積点が、まったく分かりません!!

集積点の意味がまったくわかりません。詳しく教えてください。

Aベストアンサー

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるようなx以外のAの要素が存在するような点」
と言い替えられます。

直観的な言い方をすれば、x∈XがAの集積点であるとは
「xのどんな近くにも(x以外の)Aの点がある」
と言う条件をみたすような点のことです。

ついでに集積点との対比で孤立点も覚えてしまいましょう。
集積点とはある意味で対照的なものが孤立点です。
すなわちx∈XがAの孤立点であるとは
xがAの要素であり  …(S1)
かつxのある近傍とAの共通部分にx以外のAの点が含まれない。…(S2)
ような点のことです。
Xが距離空間なら、これは
「あるεに対してxからの距離がε以下であるようなAの要素はxだけであるような点」
となります。

注意していただきたいのはx∈AであることはxがAの集積点であるためには
必要でも十分でもないということです。
xがAの点であってもそれが孤立点ならxは集積点ではないし、Aの点でないような
Aの集積点も存在します。
しかし孤立点と言う概念は集合Aの要素に対して与えられる概念ですから、Aに
属さない点が(S2)の条件だけ満たしてもそれをAの孤立点とは呼びません。

あとは距離空間(ユークリッド空間)での簡単な例を挙げておきますのでイメージをつかんで下さい

例(1)Xを2次元ユークリッド空間として
A={(x,y)∈X| x^2 + y^2 < 1} ∪ (2.0)
とします。つまりAは原点中心半径1の開円盤と点(2,0)の和集合です。
するとAの集積点(の集合)は
{(x,y)∈X| x^2 + y^2 ≦ 1}
すなわち原点中心半径1の開円盤とその境界となります。
点(2,0)は孤立点なので集積点ではありません。

例(2)Xを2次元ユークリッド空間として
A={(x,y)∈X| y = sin(1/x) ,x∈(0,∞) }
とします。Aの集積点(の集合)はA自身と集合
B={(0,y)∈X| y∈[-1,1] }
の和集合です。

例(3)Xを1次元ユークリッド空間として
A= { 1/n | n=1,2,…}
とします。原点{0}はAの集積点です。しかしA自身の点はすべて孤立点です。

例(4)Xを1次元ユークリッド空間として
Aは開区間(0,1)の有理点。すなわち
A= { x∈(0,1)|xは有理数 }
とします。Aの集積点(の集合)は閉区間[0,1]です。

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるよう...続きを読む

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q変位電流ってなんですか!!!???

現在マクスウェルの方程式を勉強しています。

そこでアンペール・マクスウェルの方程式で、変位電流というものがでてきました。しかし、その教科書ではその名前のことしか教えてくれず、調べてもこれと言ったいいものがありません。

式の導出はいいから、結局変位電流ってなんなの?といった具合です。


教えていただけませんか?具体的にどういうものなのか、どういったときに見られる現象なのか?教えていただきたいです。

ちなみにいくつか調べた結果、変位電流は「実際には存在しない電流である」や「コンデンサで交流を流したときにでるものである」という情報を入手しています。


矛盾していて困っています。

Aベストアンサー

 平行板コンデンサーがあって交流電流が流れているとします。コンデンサーにつながる導線には電流(=電荷の移動)があり、導線の周囲には変動する磁場が生じます。コンデンサーの極板の間には移動する電荷が存在しないので電流がありませんが、では、極板間の空間(の周囲)には磁場は生じないのでしょうか。

 そこだけ磁場が発生しない、というのは不自然で、やはりそこにも磁場が生じるはずだと考え、磁場を生じる原因として電場の変化があると考えられたのだと思います。

 磁場を生じるので電流と同じ働きをするが、電荷の移動である普通の電流とは違う、ということで「変位電流」というような呼び方をするようです。
 ※なぜ位置の変化を表す「変位」という言い方をするのかは私にはよくわかりません。識者の回答を待ちましょう。

http://www.cqpub.co.jp/dwm/Contents/0083/dwm008301420.pdf

QΣと∫って入れ替えできるんですか!?

Σと∫を入れ替えられる条件とはなんでしょうか?
例えば
∫Σt^n/n!dt
という式があって
Σ∫t^n/n! dt
のようにΣと∫が入れ替えて使っているのを見たことがあります。

さらに、同じようにlimと∫が入れ替えて使える時と言うのはどういうときなんでしょうか?
lim∫1/t dt 
=∫lim1/t dt
みたいな感じです。

お願いします!教えてください!!

Aベストアンサー

#1です。
A#1の補足について
普通の有限項和のΣではもちろんできることは積分の定義から明らかですのでA#1のように回答したわけです。
漠然とした一般的な質問では一般的な回答しか得られません。

無限項和の特別なケースの場合などについての回答を得たければ
>出来ない場合もあって、交換したら答えが異なるケースがあったんで
このケースの具体的な式や例をあげて、こういう場合は交換できませんか?
この交換での式変形はあっていますか?
特に積分の範囲やΣの和の範囲を明記して、有限範囲なのか、無限範囲なのかも明記する
などして質問を投げないと希望するような回答は得られませんよ。
特に、特異なケースも含めた一般論の回答は特に難しいですから(現在も解決していない特異なケースも含まれる可能性もあるので)。

また、どの程度(高校レベル、大学レベル、それ以上の大学院や専門家レベル)での回答を求められているか、回答者には分かりませんし、
質問者に理解できないレベルの回答をしても意味がないですから。

有限と無限の間には、簡単に有限で成り立つ法則が必ずしも、無限では成り立たない(適用できない)ケースがしばしば現れますから。。。

#1です。
A#1の補足について
普通の有限項和のΣではもちろんできることは積分の定義から明らかですのでA#1のように回答したわけです。
漠然とした一般的な質問では一般的な回答しか得られません。

無限項和の特別なケースの場合などについての回答を得たければ
>出来ない場合もあって、交換したら答えが異なるケースがあったんで
このケースの具体的な式や例をあげて、こういう場合は交換できませんか?
この交換での式変形はあっていますか?
特に積分の範囲やΣの和の範囲を明記して、有限範囲なのか、...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング