自分のお店を開く時の心構えとは? >>

一つの箱の中に、異なる5色の玉が1個ずつ入っている。玉をよくかき混ぜて、1個取り出し、色を確かめてから箱に戻す操作を5回繰り返す。
このとき、玉の色の種類の数をXとする。

という問題なのですが、Xの期待値が上手く求められません。
教えて下さいm(_ _)m
答えの欄は分母が3桁で分子が4桁になっていましたm(_ _)m

このQ&Aに関連する最新のQ&A

A 回答 (3件)

#1、#2です。



P(X=1)=5C1*(1/5)^5=5/5^5
はいいですね。

X=2の確率は、2種類以下の順列の数から重複している1種類だけの順列の数を引いて、
P(X=2)=5C2*(2^5-2)/5^5=300/5^5
X=3の確率は、3種類以下の順列の数から重複している2種類の順列の数を引いて、さらに引きすぎた
1種類だけの順列の数を加えて、
P(X=3)=5C3*(3^5-3C2*2^5+3C1)/5^5=1500/5^5
同様に、
P(X=4)=5C4*(4^5-4C3*3^5+4C2*2^5-4C1)/5^5=1200/5^5
P(X=5)=5C5*(5^5-5C4*4^5+5C3*3^5-5C2*2^5+5C1)/5^5=120/5^5

ちなみに、上記の確率をすべて足すと(5+300+1500+1200+120)/5^5=1となります。

期待値は、
(1*5+2*300+3*1500+4*1200+5*120)/5^5=2101/625
    • good
    • 0
この回答へのお礼

回答ありがとうございますm(_ _)m
X=2から全く分からなかったので助かりましたm(_ _)m

お礼日時:2010/12/20 05:49

#1です。



失礼しました。#1の回答は間違いです。

P(X≦2)などの計算が間違っていました。
時間があったらまた改めて回答します。
    • good
    • 0
この回答へのお礼

回答ありがとうございますm(_ _)m

お礼日時:2010/12/20 04:57

X=1の確率は分かりますか。


P(X=1)=5C1*(1/5)^5

では、取り出した玉の色の種類の数が2個以下の場合、3個以下の場合などの確率は分かりますか。
P(X≦2)=5C2*(2/5)^5
P(X≦3)=5C3*(3/5)^5
P(X≦4)=5C4*(4/5)^5
P(X≦5)=5C5*(5/5)^5

以上が分かれば、
P(X=2)=P(X≦2)-P(X=1)
P(X=3)=P(X≦3)-P(X≦2)
P(X=4)=P(X≦4)-P(X≦3)
P(X=5)=P(X≦5)-P(X≦4)
からそれぞれの確率が計算できます。

期待値は、
Σ[k=1・・・5]k*P(X=k)

計算はご自分で。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


人気Q&Aランキング