「教えて!ピックアップ」リリース!

大学で物理を学んでいます。
課題が出たのですが、分からないのれでアドバイスをいただけたらと思います。

問いは下のようなものです。
 「半径Rの球内部に、一様に電荷Qが分布している。
  (1)球の中心から距離rでの電場Eは?
  (2)ビーズのようにこの球の中心を通る直線状の孔を空け、電荷q、質量mの
    小球を入れたところ、振動した。この振動の周期は?
  (3)この孔に初速度Voで小球を入れるとどのような運動をするか?」


(1)は、なんとか解けたと思っています。
球対称な電荷分布なので、電場の式E=Q/(4πεr^2)に、
r≧aのときはQ=Q、r<aのときはQ=Q(r/a)^3を代入しました。

(2)と(3)が分かりません・・・。積分の式も立てられないです・・・。
お時間が許せば、立式と計算と答え、全部知りたいところですが、
何でもアドバイスいただければうれしいです^^;;

詳しいかたおられましたら、よろしくお願いしますm

A 回答 (6件)

課題ですから、ヒントだけ



(2) r <= R では E は r に比例しますから、小球に働く電気力も r に比例します。摩擦力など他の力は働かないとするのが題意でしょう。するとこの場合の運動はバネに付けられた質点の運動と同じで単振動です。単振動の周期の求め方は既習だと思います。必要なら復習してください。

(3) 小球は孔の他端から同じ速度で飛びだします。小球が孔の中にある間は、小球の運動は単振動の一部であり、その位相と振幅は初期条件(時刻 0 で 変位が R または -R、速度が V0)から決まります。孔の他端から飛び出した後は r^2 に比例する引力を受けますが、これは万有引力の下での運動と同じです。これについても、必要なら復習してください。V0 の大きさによって、戻ってくる場合と、無限遠に飛び去る場合があります。
    • good
    • 0

5です。



先にこたえられている方がいますが、(3)の問題で突き抜けた後引き戻されるというのを見落としていました。
    • good
    • 0

方程式を立てたいという話であるなら、(2)は次のようにすれば解けそうですね。



球体内部の問題であるので、電場は

E=Q(r/a)^3/(4πεr^2)=Qr/(4πεa^3)

とrに比例した値となる。運動が今考えている直線のみに束縛することが可能であるとして、たぶんqではなく-qとおけば、運動方程式は

m d^2r/dt^2 =-qQr/(4πεa^3)

⇒ d^2r/dt^2+qQ/(4πεma^3) r = 0

後はForier変換で周波数出すなり、y=sin(ωt)を仮定してこれを満たすωから周期を出すなりしてみてください。

この方程式解けばわかることですが、球の両端で速度が0になるようです。言いかえれば両端で運動エネルギーが0となるわけですね。

(3)はそういう状況の下で片方の端で速度をV0にしてしまっているわけなので余分な運動エネルギーがあります。このエネルギーはもう反対方向に粒子が達しても残ってしまうので、結果突き抜けてしまうが正解かと思われます。
    • good
    • 0

 #3です。

うわあ、単純だが重大なミスです。球を地球と読み替えてください(でないと、gが意味不明です)。ごめんなさいです。
    • good
    • 0

>(1)は、なんとか解けたと思っています。



 答えが定性的に合っているかのチェックの方法。r≧aのとき、電荷が球のの中心に全電荷が集まったのと同じ式になっているかどうか。r<aのとき、半径aの球の表面にいるかのようになっているか(つまりrより外側からの影響が0になる)。

 電磁気力と万有引力は式の形が同じです。(2)について、万有引力の場合の似たような問題を書いて見ますから、比べて参考にしてください。

問)半径Rで密度が一様にρの球がある。球の中心を通る細い穴を掘った。球の表面から穴に物体を落下させると物体は単振動を行うことを示し、その周期を求めよ。

答)球の中心から距離x(≦R)にある質点に働く力は、羽気xの球の質量(4π/3)x^3ρが中心に集まっているとしたときの万有引力、
 F = -Gm(4π/3)x^3ρ/x^2 = -(Gm(4π/3ρ)/x - (1)
となって復元力が働くことが分かる。x = Rのときは、F = -mgとなるはずだから、
 mg = Gm(4π/3)ρR ∴G = (3/4π)(g/ρR)
であるので、(1)は、
 F = -mgx/R - (3)
そこで、k = mg/Rとすると、これはばね定数kのばねの運動と同じで、その周期Tは、
 T = 2π√(m/k) = 2π√(R/g)
となる。

 ちなみに、この周期は球の表面すれすれを万有引力で円運動する物体の周期と一致します。

 ここまで来たら、後少し。初速度があるということは、その初速度を与える高さから落下させたのと同じことですね。
    • good
    • 0

訂正です。

#1の

>孔の他端から飛び出した後は r^2 に比例する引力を受けますが、

で、「比例」は間違いで、正しくは「反比例」です。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


人気Q&Aランキング