人に聞けない痔の悩み、これでスッキリ >>

片持ち梁で撓み量を求める場合 梁の断面形状が一様な場合はよいのですが断面形状(断面二次モ-メント)が梁の長さ方向の関数で変化するような場合 撓み量を求める方法を教えていただきたいのですが 宜しくおねがいします。

このQ&Aに関連する最新のQ&A

A 回答 (5件)

梁の断面形状が長手方向(z方向)で変化する場合は、断面二次モーメントを、固定端からの距離 z の関数 I(z) として、それを梁の形状 y(y) に関する微分方程式に代入した


  d^2y/dz^2 = M(z)/{ E*I(z) } --- (1)
を y(z) について解けばいいだけです。 M(z) は曲げモーメント、E はヤング率です。ヤング率も z 方向で変わるとき(梁の材料が途中で変わるときなど)は、 E も z の関数 E(z) とします。

y方向に荷重をかけたときの断面二次モーメントは、dA を断面内の微小面積として
  I(z) = ∫y^2 dA
で定義されますが、断面が矩形(長方形)や円などのように単純な形状のときは以下のようになります。

(断面形状が矩形の場合)
断面積が位置 z によって変わり、幅が w(z)、高さが h(z) で表わされるとき
   dA = dx dy
   積分範囲は、x 方向が矩形の幅の範囲、y 方向が矩形の高さの範囲
として
  I(z) = ∫[ x = -w(z)/2 ~ w(z)/2 ] dx∫[ y = -h(z)/2 ~ h(z)/2 ] y^2 dy = { w(z)*h(z)^3 }/12
となります。梁が長さ L の四角錐なら、w(z) = w0*( L - z )/L、h(z) = h0*( L - z )/L です( w0 と h0 は底面の幅と高さ)。

(断面形状が円の場合)
断面積が位置 z によって変わり、断面の半径が r(z) で表わされるとき
   dA = r dr dθ
   y = r*sinθ
より
   y^2 dA = r^3 (sinθ)^2 dr dθ = r^3*{ 1 - cos(2θ) }/2 dr dθ
したがって
   I(z) = ∫[ r = 0 ~ r(z) ] dr∫[ θ = 0 ~ 2*π ] r^3*{ 1 - cos(2θ) }/2 dθ
    = π*{ r(z)^4 }/4
となります。梁が長さ L の円錐なら、r(z) = r0*( L - z )/L です(r0 は底面の半径)。

富山高専ではここ(http://www.toyama-nct.ac.jp/gakusei/syllabus/16/ …)の第32週のところの右側に書いてあるように、上の方法で解かないと×になると思いますが、smzsさんの場合はどうなのでしょうか。集中荷重や分布荷重のとき M(z) がどういう形になるかとか、式(1)を解いた後、たわみを計算する方法は分かりますね?
    • good
    • 2
この回答へのお礼

回答有難うございます。
実際 リフティング ビ-ムの最大撓みを求めなければならないので実行してみて 実際の測定値と比較してみたいと思います。
snzsさんの弾性荷重法は知りませんでした。私なりに調べてみたいと思います。有難うございました。

お礼日時:2011/01/06 11:26

#3です。



#4様ご回答は、最も基本に忠実な方法ですね。
ですから、仮に、問題が、基本に忠実な方法を要求しているのであれば、もちろん × でしょう。

弾性荷重法というのは、たわみを、微分方程式を解くこと無しに求める方法として考案されています。

構造力学で、EIが入ることを別にすれば、
 たわみ → 2階微分 → 曲げモーメント
 曲げモーメント → 2階微分 → 荷重
となるのは、ご存知と思います。

 ですから、荷重を与え、微分方程式を解けば、当然、曲げモーメントは求まります。
 同様に、曲げモーメントを与え、微分方程式を解けば、たわみが求まります。

 しかし、荷重から曲げモーメントを求める際、多くの場合は、微分方程式を解くこと無しに、力の釣り合いから容易に曲げモーメントは得られます。

 ここで、上の「たわみ → 2階微分 → 曲げモーメント」の関係に注目すると、これは、EIが入ることを別にすれば「曲げモーメント → 2階微分 → 荷重」の関係と同じです。
 つまり、曲げモーメント(正確には曲げモーメント/EI)を仮想の荷重と思って、その荷重に対する仮想の曲げモーメントを(力の釣り合いで)求めれば、それが、実際には、もとの荷重のたわみになります。結局、微分方程式を解くこと無しに、たわみが得られることになります。これが弾性荷重法です。

 私は、現在は構造力学担当ではなく他の科目の担当ですが、構造力学を担当していた頃は、この弾性荷重法を変断面はりの解法として学生に勧めていました。

あっ、この回答ではわかりやすくするために「仮想の荷重」「仮想の曲げモーメント」などという表現をしてしまいましたが、これらは、当然、仮想仕事や仮想変位などとは別物です。
    • good
    • 0

「弾性荷重法」をご存じないですか? 構造力学の、かなり早い段階で出てくるはずです。



まず、もとの片持ちばりに、普通に荷重を載せ、曲げモーメントを求めます。

次に、その曲げモーメントをEIで割った「M/EI」を”仮想の荷重”とみなし、元の片持ち梁を左右反転させた(固定端と自由端を反転させた)はり(共訳ばりといいます)に、その「仮想の荷重」を載せて、「仮想の荷重に対する曲げモーメント」を求めます。
すると、その「仮想の曲げモーメント」が、元の梁の、元の荷重に対するたわみになります。

変断面の静定ばりのたわみを求める際に、よく使われる方法です。
    • good
    • 0
この回答へのお礼

機械工学を専攻したのですが弾性荷重法は知りませんでした。ただ忘れただけかもしれませんが。
自分なり調べてみたいと思います。また質問させていただくかもしれませんがまたよろしくお願いします。有難うございました。

お礼日時:2011/01/06 11:40

梁の微小領域で力の釣合とモーメントの釣合を考えればよいと思います。


積分を使います♪
    • good
    • 0

こういう事は模型実験で近似的に求めるのです

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q段付き棒(梁)の曲げについて

段付き棒(梁)が折れないか強度を評価するために、曲げ応力について考えております。

考えている梁ですが、
高さH1、幅B、長さL1の梁1と高さH2、幅B、長さL2の梁2を縦に繋げた長さL1+L2の梁です。
ヤング率は共に同じでEとします。

梁1の先を固定し(固定端)、他方(梁2)を自由端とします。
自由端の先に荷重Wをかけています。
梁自体の重さは考えていません。

このときに梁1と梁2の接合面に生じる曲げ応力を求めたいのですが、どうすればいいのでしょうか?

断面が変化しない場合でしたらσ=M・Z/Iで求められるのですが、今回のように断面が不連続になる場合はどう計算すればよいのか分かりません。

応力を過小評価しなければ、大雑把な見積もりで大丈夫です。
(最終的に強度が十分か判断したいので、悪いほうに考えるのは問題ないです)
ちなみに最終的には切欠け係数を用いて安全率を出そうと考えています。

有限要素法は使わずに簡単に見積もりたいと考えています。
答えにくいのでしたら簡単なヒントだけでもご教授願います。

段付き棒(梁)が折れないか強度を評価するために、曲げ応力について考えております。

考えている梁ですが、
高さH1、幅B、長さL1の梁1と高さH2、幅B、長さL2の梁2を縦に繋げた長さL1+L2の梁です。
ヤング率は共に同じでEとします。

梁1の先を固定し(固定端)、他方(梁2)を自由端とします。
自由端の先に荷重Wをかけています。
梁自体の重さは考えていません。

このときに梁1と梁2の接合面に生じる曲げ応力を求めたいのですが、どうすればいいのでしょうか?

断面が変化しない場合で...続きを読む

Aベストアンサー

> これは公称応力をσ=M/Zで求め、応力集中係数αをかけて表面曲げ応力を算出するということなのでしょうか?

その通りです。ただし、たとえα=100や1000などと出たとしても、強度計算上のα(要するにβ)は3で構いません。
局所応力値が破壊に直接影響を及ぼすわけではないからです。
表面応力の値が、引張強さをはるかに越えるようなバカ高い値になって、悩んでいる姿をよく見かけますが、応力値が引張強さを越えてはいけないという根拠はどこにもないのです。むしろ、越える応力が出ることはザラであり、その場合でも破損に至らずに稼動していることは多いのです。

> αは理論的には求められない
理論的という意味の捉え方によりますが、私に言わせれば、αは、偏微分方程式を解くことによって求められる値ですので、理論的に求められるということになります。ただ、実際の数値を求める際に、一筋縄ではいかないだけです。
一方のβは、αが実際の破壊に及ぼす影響であって、これは実現象を測定しなければ求めることができません。要するに、βは理論的には求められません。

> 片側に段のある棒の曲げを両側に段のある棒の曲げのデータで代用しても問題はないのでしょうか?

基本的にはOKです。
ただし、次のことに注意して下さい。(H1>H2とします。)
両側に段のある棒”を対称面に関して半分にした形状と、”片側に段のある棒”とが一致するように条件を選びましょう。
言い換えれば、応力集中率表を使用する場合、ρ/b(ρは段付き部の曲率半径、bは段付き部のρ=0のときの幅、ここでのH2)というパラメータを用いますが、幅は、”両側に段のある棒”では2b=H2、”片側に段のある棒”ではb=H2と考えて、bの値を算出します。

以下、少々細かい話です。
1.引張なら、上記で事実上OKです。

2.曲げの場合には、次の2つの問題点があり、引張のときほどコトは単純ではありません。
(1)”片側に段のある棒”では、段付き部の両側で曲げ中心がズレ、”両側に段のある棒”ではこれが起こらない。
(2)”片側に段のある棒”の応力分布と、”両側に段のある棒”の応力分布を対称面で半分にして眺めたときの応力分布を比較すると、後者では前者に引張成分が加わっている状態になる。

(1)については、軸ズレの現象は、応力集中率を高めますが、幅に対して長さが十分に長く、特に太い方の部材が幅の2倍以上の長さがあれば、影響はほとんどありません。また、そんなことを言っていては実務が解決できないので、無視して考えることにします。
(2)については、幸いにして応力集中率は、引張の場合も曲げの場合も、大して変わらないために、これも考えなくて良いと思います

なお、(1)で応力集中率が高くなる度合いをどうしても知りたければ、引張りの場合について、”段付き棒”と”最大&最小断面部が同寸法の片側切欠板(要するに、幅がH1,切欠部の最小幅がH2の板)”を比較してご覧になると良いでしょう。
後者の方が高く出ます。しかし、(1)の軸ズレでは、この相違ほど出ません。要するに、応力集中率が高くなる度合いの上限値がわかります。

> これは公称応力をσ=M/Zで求め、応力集中係数αをかけて表面曲げ応力を算出するということなのでしょうか?

その通りです。ただし、たとえα=100や1000などと出たとしても、強度計算上のα(要するにβ)は3で構いません。
局所応力値が破壊に直接影響を及ぼすわけではないからです。
表面応力の値が、引張強さをはるかに越えるようなバカ高い値になって、悩んでいる姿をよく見かけますが、応力値が引張強さを越えてはいけないという根拠はどこにもないのです。むしろ、越える応力が出ることはザラであり、そ...続きを読む

Q断面二次モーメントと慣性モーメント

現在物体の慣性モーメントを求めようとしています.

そこで疑問が生じたので質問します.

材料力学では断面二次モーメント=慣性モーメント
となっています.

ですが慣性モーメントって∫r^2 dmですよね?

次元が全く違うしなぜ慣性モーメントなんでしょうか?

また慣性モーメントと断面二次モーメントの関係があれば教えてください

よろしくお願いします.

Aベストアンサー

そうですね。#3の説明は,理解するには良い方法と思いますが,厳密に言うと違います。

慣性モーメントの定義を分かりやすく簡単に説明すると,慣性力は物体が現在の状態を維持しようとする力,つまり,物体の運動や変形に抵抗する力の事です。モーメントというのは回転に関する運動率,つまり,回転に関する係数です。合わせて,回転に対する抵抗係数が慣性モーメントです。

係数ですから次元に関係はありません。と言うよりも,適用される状況によって異なった次元を持ってもかまわないと言うことです。

そこで,慣性モーメントとは,動力学では,回転運動に対する抵抗係数で,静力学では,回転変形(曲げ変形)に対する抵抗係数です。

J=∫r^2 dmやI=∫r^2 dAという算定式は,一般的に解釈すれば,「慣性モーメントは,物体が物体の任意の軸に関して,物体内の微小部分と軸から微小部分までの距離の2乗との積を全物体について合算した値である」と定義できると思います。
質量慣性モーメントの場合,この微小部分が微小質量であり,断面2次モーメントの場合微小部分が微小断面積になります。

そこで,
>「材料力学では」断面二次モーメント=慣性モーメント
という定義がされているものと思いますが,ここでは,「材料力学では」と言う条件が重要な部分だと思います。

でも,こんな説明をしている書籍を見たことはありません。断定的な説明をしていますが,私の理解している内容を文章にしただけですので,ほぼ合っていると思いますが,多少の違いがあるかもしれません。他の専門家の意見も聞いて頂くと良いと思います。

そうですね。#3の説明は,理解するには良い方法と思いますが,厳密に言うと違います。

慣性モーメントの定義を分かりやすく簡単に説明すると,慣性力は物体が現在の状態を維持しようとする力,つまり,物体の運動や変形に抵抗する力の事です。モーメントというのは回転に関する運動率,つまり,回転に関する係数です。合わせて,回転に対する抵抗係数が慣性モーメントです。

係数ですから次元に関係はありません。と言うよりも,適用される状況によって異なった次元を持ってもかまわないと言うことです。
...続きを読む

Q断面2次モーメントと断面係数の違い

断面2次モーメントと断面係数の違いなんですが

断面2次モーメントとは、部材の変形のしにくさを表して、断面2次モーメントが大きいと、たわみにくく座屈しにくいことを示す。
それに対して断面係数は、部材の曲げ強さを表し、断面係数が大きいと曲げに対して強いことを示す。

なんですが、思うにたわみにくさと曲げ強さはイコールではないのですか?

断面2次モーメントが大きいと曲げに対しても強い。
断面係数が大きくてもたわみににくい。

とはかならずしもならないのでしょうか?
いまいち区別してる意味がよくわかりません
ご教授くださいませんか

Aベストアンサー

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超えた時に破壊する。

この時,(A)部分の負担する力(T)が同じならば,(A)の面積(=)が大きい程破壊しにくい。又,中心点からの距離(J)が大きいと破壊しにくい。簡単に言ってしまえば,この時の(A)の面積と距離(J)を掛けたものが,曲げ外力に抵抗する抵抗曲げ強度を決めるための係数,即ち,断面係数(Z)です。

つまり,曲げ強度に影響を与える断面係数は,材料の材質,強度,変形などに関係なく,形状と距離だけで決まります。

一方,(A)部分に作用した引張力(T)は,(A)部分を伸ばす,即ち,変形させます。この時の変形量は,フックの法則によって,形状,距離に加えてヤング係数によって決まります。
この時,変形量は断面の外縁が最も大きく,中心位置に近いほど小さくなります。この時の形状の変化率を表すのが断面2次モーメントです。
(A)部分が引張によって伸び,(B)部分が圧縮による縮んだ結果,この材料はδ方向に変形します。この変形量がたわみです。

つまり,断面係数と断面2次モーメントは,公式は似ていますが,断面係数は曲げ抵抗強度に関する量であり,断面2次モーメントは変形率に関する量であって,お互いに全く関連性のない形状に関する係数です。

// たわむ=まがる
は,変形に関するもので,強度とは関係有りませんので,断面2次モーメントにだけ関係する語句です。(たくさん曲がっても=たわみが大きくても,破壊するとは限らない。)

これを踏まえて,

// たとえば
// I>Zの場合だと割り箸のようにたわみにくいけど折れやすく
// I<Zの場合だと釣竿のようにたわみやすいけど折れにくい
// とかだとイメージできるんですが

というのは,上記の断面係数と断面2次モーメントの理屈から言うと,正解とは言えませんが,結果的に,強度とたわみの関係を言い表している,とっても素敵な例として有効だと思います。(今後,私にも使わせてください。)

この例の(I)を,曲げ剛性(EI)と言い換えれば,強度と変形の関係を表す例として完璧かもしれません。つまり,変形=たわみの話をする時,(I)が単独で使われることはなく,常に一組の概念として,曲げ剛性(K=EI)として使われる,と言うことです。

これらの断面に関する諸量は,構造力学や材料力学において,数学的に積分を用いて説明され,イメージとして説明されることはほとんど有りません。ですから,実際に計算する事は出来ても,どのようなイメージかと聞かれると答えに窮して仕舞うのも仕方ない事だと思います。私もその一人ですが・・・

どちらにしても,断面係数と断面2次モーメントの関連性について,1級建築士でもイメージする事が難しい概念ですから,イメージ化して素人に説明するのは,多少無理があると思います。

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超え...続きを読む

Q引張応力とせん断応力の合成応力?

物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?
引張応力とせん断応力を合成した応力が存在し,それが許容応力以下かを調べる必要があるのでしょうか?
その場合は,計算方法も教えて欲しいです.

Aベストアンサー

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する」は同義語ではありません。

一般的な許容応力法の検討では、

3次元物体には、3方向(x、y、z)の材軸が存在します。この物体に3方向の軸力と剪断力が同時に作用する場合、この物体に生じる最大応力は、
σmax=√(σx^2+σy^2+σz^2+3τ^2)
で求めることができます。

もし、同時に剪断力を受ける物体が細長い物体で、1方向(x方向)にのみ引張りが生じているならば、
σy=σz=0
となって、
σmax=√(σx^2+3τ^2)
で計算することができます。この最大応力が許容応力を超えないことを確かめます。

多少、簡単に書きすぎたかもしれませんが、基本的な流れとしては、合っていると思います。
また、破壊についても基本的な考え方は同じですが、式の表現方法が多少異なり、より詳細な表現がされ、比較の対象が「許容応力」ではなく「降伏応力」になります。

詳しくは、応力テンソル、ミーゼス、トレスカなどのキーワードをgooなどで検索すると詳しい説明のあるサイトを見ることができます。

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する...続きを読む

Q曲げ試験について

 曲げ試験のひずみ―荷重、たわみ―荷重の測定値と理論値では必ず一致しないと言うのですが、それは誤差によるものではないとしたら他に何が考えられるでしょうか?教えてください。

Aベストアンサー

chaborinさんのご質問の「理論値」の理論がどの範囲まで考えているか、によってお答えは変わってくると思います。(非弾性挙動や材料の履歴まで含めて精密に材料をモデル化すれば、理論値と測定値のずれは限り無く小さくなるのですから)

ここではchaborinさんの「理論値」が、
(1)試料の変形は、1次元の単純なはり(梁)の曲げで表される
(2)試料を構成する材料は線形(弾性)材料
なる仮定に基づいて、2点で支持して中央に荷重を与えた場合のたわみを計算した数値のことに解釈するとします。

まず(1)ですがそのたわみ量の計算においては通常
(a)断面の形状・寸法は変形によっても変化しない
(b)各断面は変形しても、傾かない
という仮定をおいて解きます。変形量が微小の場合はよいのですが、(a)(b)ともその妥当性が怪しくなってくることはお分かりかと思います。試料の上面は圧縮されるので少し太り、下面は引っ張られて痩せます。
(b)は言葉で読むと分かりにくいかも知れませんが、次のようなことです。
最初に下のように試料の側面に、鉛直な線を引いておきます。荷重をかけない状態では総ての線は平行です。

   荷重
   ↓
□□□□□□□
 ○   ○

これに荷重をかけると全体がしなり、側面に描いた線もすこし斜めに傾きます(試料の左側では右上がり、試料の右側では左上がり)。しかし一番簡単な近似ではこれを無視して解析します。(詳しくは材料力学の教科書の「はりの曲げ」辺りを読んでみて下さい)

さらに上記の解析では必ず「ヤング率」という数字を使うと思います。ご存じかと思いますがヤング率は材料によって決まる数値で、ひずみと応力の間の比例係数です。
この比例の様子を図に表すと下のようになります。

応力

│   *
│  *
│ *
│*
└─────→ひずみ

このようにひずみと応力が完全に比例する材料を「線形材料」や「(完全)弾性材料」などと呼びます。
しかし現実のの材料はひずみ-応力の関係がどこまでも比例するわけではありません。例えば下のように、ひずみが大きくなると応力とひずみが比例しなくなるのが一般的です。


応力

│      *
│   *
│ *
│*
└─────→ひずみ

このような挙動を「非線形挙動」「非弾性挙動」などと呼びます。こうなるともはや、ヤング率を定数と見なせなくなります。従って最初の仮定の(2)も怪しくなってきます。

まとめますと、単純なはり(梁)の曲げで求めた荷重-たわみの理論値は、現実の材料と
(1)はりの断面形状・寸法の変化を無視している
(2)解析の際に、はりの断面の変形に伴う傾きを無視している
(3)解析では材料を線形としているが、実際の材料は非線形の挙動を示す
という点で差異があり、その分が誤差になるということです。

chaborinさんのご質問の「理論値」の理論がどの範囲まで考えているか、によってお答えは変わってくると思います。(非弾性挙動や材料の履歴まで含めて精密に材料をモデル化すれば、理論値と測定値のずれは限り無く小さくなるのですから)

ここではchaborinさんの「理論値」が、
(1)試料の変形は、1次元の単純なはり(梁)の曲げで表される
(2)試料を構成する材料は線形(弾性)材料
なる仮定に基づいて、2点で支持して中央に荷重を与えた場合のたわみを計算した数値のことに解釈するとします。

まず(1)ですがそ...続きを読む

Q樹脂材料の曲げ弾性率について

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとしたのですが、
材料のヤング率(縦弾性係数)を知らないことに
気づきました。
同僚に聞いてみたところ、「曲げ弾性率」というのは
材料の仕様書に載っていると教えてくれました。
職場にある材料便覧を見ても「曲げ弾性率」は
載っていました。
この「曲げ弾性率」はヤング率(縦弾性係数)と
同じなのでしょうか。それとも違うのでしょうか。
もし違う場合、ヤング率(縦弾性係数)は
どのようにして調べるべきなのでしょうか。
似たような経験がある方がいましたら
お手数ですがご教示願います。

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとし...続きを読む

Aベストアンサー

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりますが,曲げのかかる部材には,引張・圧縮応力の他に,せん断応力もかかっています.これらの効果が総合的に寄与してくるため,引張弾性率と曲げ弾性率は,「意味合いとしては」異なる物性値です.

しかし,ごく一般的なプラスチックであれば,引張弾性率と曲げ弾性率はほぼ同じ値になります.
下記などにデータが出ていますが,恐らくほぼ同等か,曲げ弾性率の方が10%程度低い値になっていると思います.
http://www.m-ep.co.jp/mep-j/tech/index.htm
http://www.mrc.co.jp/acrypet/04tech_01.html

カタログデータに曲げ試験が多い理由は,試験が簡単だからです.薄い平板の試験片が使えますからね(チューイングガムのような形状です).それに対し,引張試験では,試験片を「つかむ部分」の加工が難しく,やや複雑な形状になってしまいます.

というわけで,プラスチックの分野では,曲げ弾性率を測定して,これをEとして代用するケースが多いと思います.

ただし,圧縮やせん断弾性率が引張と極端に違う材料・・・たとえば,ガラス繊維で一方向強化したような異方性材料では,曲げ弾性率とヤング率は大きく異なります.

あと,蛇足になりますが・・・
曲げ弾性率=曲げ応力/曲げひずみ
とありますけど,前述の通り,曲げ応力や曲げひずみは一定値ではありませんので注意が必要ですね.材料内部で分布をもっています(ここが引張と違うところ).

通常は,曲げスパンL,破断荷重P,試験片幅b,厚さh,たわみxなどを用いて,
E=(P・L^3)/(4・b・h^3・x)
のような式で求めます.試験方法によっても式が違ってきますので,材料力学の教科書をお読み下さい.

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりま...続きを読む

Q片持ち梁のたわみについて(断面2次モーメント?)

 片持ち梁のたわみについて質問します、たとえば梁の断面を長方形として寸法を幅a高さbとした場合断面2次モーメントはab3/12となり、梁に同じ重さのものがぶら下がっている場合、たわみは梁の幅aが2倍になるとたわみが1/2となりまた高さbが2倍になると8倍になるという事になると思います。
 そこで質問なのですが、全く同じ棒を用い縦に並べた場合は、高さが2倍の棒を使うように1/8になるのでしょうか(横に並べた場合にはそれぞれにかかる重さが1/2でたわみも1/2になると思いますが)

Aベストアンサー

長さ(L),ヤング係数(E),断面2次モーメント(I)の片持ち梁の先端に集中荷重(P)が作用したときの梁先端のたわみは,
δ=PL^3/3EI  ・・・(1)
です。この時,梁の断面を幅(b),成(h)とすると,断面2次モーメントは,
I=bh^3/12   ・・・(2)です。(2)を(1)に代入すると,
δ=12P・L^3/3Ebh^3   ・・・(3)
ここで,α=L^3/3bh^3と置くと,(3)式は,
δ=12P・α   ・・・(4)
と表せます。

梁が,横に並んでいる場合は,
I=(b+b)h^3/12=2・bh^3/12 
となり,(1)式に代入すると,
δ=1/2・12P・α ・・・(5)
となり,たわみが1/2になります。

今度は,高さが2倍になったとき,
I=b(2h)^3/12=8・bh^3/12
同様に,(1)に代入すると,
δ=1/8・12P・α ・・・(6)
になり,たわみが1/8になります。

さて,ここからが本番で,
縦に並んだときは,上材と下材の間に摩擦力が働き,この摩擦力は,摩擦力=荷重x摩擦係数で表すことが出来ます。ここで,荷重(P)が小さいときは,摩擦力によって材料の接触面は滑らず,滑りが始めるのは,許容摩擦力を超えたときである,と仮定します。又,許容摩擦力は,この梁が耐え得る最大曲げ荷重の摩擦係数倍であると,定義すると,最大曲げ荷重:Py,摩擦係数:μ
許容摩擦力:Pf=μPy
です。

ここで,荷重(P)<許容摩擦力(Pf)の場合は,上材と下材が一体として働きますので,たわみは,(6)と同じになります。

さて,それでは,許容摩擦力(Pf)<荷重(P)の場合のたわみは,許容摩擦力(Pf)までは,一体として働き,滑り始めた後は,別の材料として働くと考えることが出来ます。つまり,
δ=(1/8・12P・α)+(1/2・12(P-Pf)・α) 
δ=1/2・(12P-9Pf)・α   ・・・(7)
と表すことが出来ます。

ここで,摩擦力の生じない場合は,Pf=0なので,
δ=1/2・12P・α
となり,横に並べたとき(5)と同じ,
上材と下材が完全に固定されている場合は,全く滑らないのでμ=1,Pf=Pで,
δ=1/2・3P・α=1/8・12P・α
となり,高さが2倍の時(6)と同じになります。

因みに,通常の材料では,材料間の摩擦係数がμ=1/3程度と言うことが多いので,μ=1/3を採用し,最大荷重の時(Py)を考え,(7)に代入すれば,
P=Py,Pf=Py/3
δ=1/2.6・12Py・α
αを元に戻すと
δ=1/2.6・12Py・L^3/3Ebk^3=PyL^3/(3E(2.6bh^3/12))
I=2.6bh^3/12
程度の数値になります。
これが。#1さんの仰有る,断面2次モーメントが「2倍ぐらい」,たわみが「1/2」ぐらいの意味です。

以上,参考にしてください。

長さ(L),ヤング係数(E),断面2次モーメント(I)の片持ち梁の先端に集中荷重(P)が作用したときの梁先端のたわみは,
δ=PL^3/3EI  ・・・(1)
です。この時,梁の断面を幅(b),成(h)とすると,断面2次モーメントは,
I=bh^3/12   ・・・(2)です。(2)を(1)に代入すると,
δ=12P・L^3/3Ebh^3   ・・・(3)
ここで,α=L^3/3bh^3と置くと,(3)式は,
δ=12P・α   ・・・(4)
と表せます。

梁が,横に並んでいる場合は,
I=(b+b)h^3/12=2・bh^3/12 
となり,...続きを読む

Q鋼材のせん断強度√3の意味について

鋼材のせん断強度だけF/1.5√3と
√3が係数として掛かってます。
他の、圧縮・引張・曲げには√3の係数
はかかりません。
なぜ、せん断だけ√3の係数が掛かるのか
分かる方教えて頂けませんか?

Aベストアンサー

基本的には、yu-foさんの回答3で良いと思います。

物体の多軸応力に対する降伏条件の説の中で、von Mises の剪断ひずみエネルギー説があります。
3次元物体の主応力をσ1、σ2、σ3としたときの降伏条件は、
単軸引張に対する降伏応力度をσy、とすると、
剪断応力度は主応力の差に比例するので、
σy^2=1/2・((σ1-σ2)^2+(σ1-σ3)^2+(σ2-σ)^2))・・・(1)
であらわすことが出来ます。

ここで、鉄骨造に用いる鋼材はほとんど板材のの組み合わせなので、2次元つまり、平面応力とみなすことができ、
σ3=0・・・(2)
とする事ができます。
また、純剪断状態を考慮すれば、主応力が全て剪断であると考えられるので、
σ1=(-σ2)=τ・・・(3)
と置けます。

(2),(3)を(1)に代入して計算すると、
σy^2=3τ^2・・・(4)
となります。

(4)を変形して
τ=σy/(√3)
となります。

つまり、√3は、vonMisesの剪断ひずみエネルギー説に基づいた降伏理論によって導かれた数値です。

基本的には、yu-foさんの回答3で良いと思います。

物体の多軸応力に対する降伏条件の説の中で、von Mises の剪断ひずみエネルギー説があります。
3次元物体の主応力をσ1、σ2、σ3としたときの降伏条件は、
単軸引張に対する降伏応力度をσy、とすると、
剪断応力度は主応力の差に比例するので、
σy^2=1/2・((σ1-σ2)^2+(σ1-σ3)^2+(σ2-σ)^2))・・・(1)
であらわすことが出来ます。

ここで、鉄骨造に用いる鋼材はほとんど板材のの組み合わせなので、2次元つまり、平面応力とみなすことができ、
σ3=...続きを読む

Q台形の重心を求めるには

上底a 下底b 高さ h とした場合、台形の重心をもとめる公式は、 (2a+b)/(a+b)*h/3 でよろしいでしょうか?

Aベストアンサー

計算してみました。
面積
 A=(a+b)h/2
下底周りの断面一次モーメント
 S=a・h^2/2 + (b-a)h^2/6
  =h^2(2a+b)/6

重心位置、S/Aですから、
 G=(2a+b)/(a+b) ・ h/3

合ってますね。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング