gooドクター有料プランが1ヶ月間無料!

In=∫1/(x^2+1)^n dx (n=0,1,2,・・・・) の漸化式を求めなさい。

という問題です。

解答のみしか分からず困っています。

【解】In+1=2n-1/2n *In + x/2n(x^2+1)^n (n≧1)

どなたか、解説よろしくお願いします!!

A 回答 (3件)

#2です。



A#2の補足の質問について

>>4→5行目の式変形が分かりません。
>ここが部分積分ですか?
その通りです。

>=∫1/(x^2+1)^n dx+∫ x*(-x)/(x^2+1)^(n+1) dx
>=In + x*(1/(2n))/(x^2+1)^n -(1/(2n))∫1/(x^2+1)^n dx

第一項は
In=∫1/(x^2+1)^n dx
そのものです。
第2項を部分積分します。
∫ x*(-x)/(x^2+1)^(n+1) dx
=x*(1/(2n))/(x^2+1)^n -(1/(2n))∫1/(x^2+1)^n dx

∫(-x)/(x^2+1)^(n+1) dx=(1/(2n))/(x^2+1)^n + C
であることは右辺を微分すれば被積分関数になる事から分かるでしょう。
    • good
    • 1
この回答へのお礼

追加も含めて、詳しい解説ありがとうございました!!

お礼日時:2011/03/23 22:39

一寸、変形してから、#1さんのアドバイスにあるように部分積分を適用し、式を少し変形するだけ。

自力で出来るようにチャンと式を追って理解するようにしてください。
ただ、眺めて丸写しするだけでは、質問者さんにとって何の役にも立たないですよ。

In+1=∫1/(x^2+1)^(n+1) dx (n≧1)
=∫(x^2+1-x^2)/(x^2+1)^(n+1) dx
=∫(x^2+1)/(x^2+1)^(n+1) dx-∫(x*x)/(x^2+1)^(n+1) dx
=∫1/(x^2+1)^n dx+∫ x*(-x)/(x^2+1)^(n+1) dx
=In + x*(1/(2n))/(x^2+1)^n -(1/(2n))∫1/(x^2+1)^n dx
=In{1-(1/(2n))} +x/{(2n)(x^2+1)^n} +C
={(2n-1)/(2n)}*In + x/{(2n)(x^2+1)^n} +C

この回答への補足

慣れてないもので・・・手間取っています。

4→5行目の式変形が分かりません。
ここが部分積分ですか?

=∫1/(x^2+1)^n dx+∫ x*(-x)/(x^2+1)^(n+1) dx
=In + x*(1/(2n))/(x^2+1)^n -(1/(2n))∫1/(x^2+1)^n dx

すみませんが、よろしくお願いします。

補足日時:2011/03/23 13:39
    • good
    • 1

「部分積分してみろ」という神の声が聞こえた気がする.

    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


人気Q&Aランキング