行列の展開についての質問です。
行列A,B,C.Dは正則であるとき、以下の行列を展開、括弧の無いように展開してください。
(CA((BD~-1)~1 -A)~-1D)~-1)C

A 回答 (3件)

ただひとつ、(XY)~-1 = (Y~-1)(X~-1) を知っていれば済む話です。


上の式は、両辺に右から XY を掛けてみれば確認できますね。

~-1 がかなり見難いので、替わりに ’で表してみます。

CA((BD’)’- A)’D)’C
= CA(DB’- A)’D)’C
= CA(D’(DB’- A))C
= CA(B’- D’A)C    ←[1]
= CAB’C - CAD’AC   ←[2]

[1] と [2] のどちらが見易いかは、用途によるでしょう。
    • good
    • 0
この回答へのお礼

”~-1”見くかったですよね(++)
丁寧なご解答ありがとうございましたm(。。)m

お礼日時:2011/04/10 17:30

>(CA((BD~-1)~1 -A)~-1D)~-1)C


  ↓ 対応括弧のチェック
[CA{(BD~-1)~1 -A}~-1D]~-1)C

1 :単位行列として、
   二・三番目の 1 は無くても OK ?
   つまり、[CA{(BD~-1)~ - A}~ - D]~ - 1)C ?

最後の ) に対応する ( は?

M~ : M の逆行列?
   

この回答への補足

入力ミスのようです。すみませんでした。
M~-1が逆行列です。
(CA((BD~-1)~-1 -A)~-1D)~-1)C
でした。すみません。

補足日時:2011/04/08 02:12
    • good
    • 0

「~」ってなに?


そして, 何が分からないの?

この回答への補足

逆行列のこととして入力させていただきました。

M~-1が逆行列です。
(CA((BD~-1)~-1 -A)~-1D)~-1)C
でした。
展開の仕方がわかりません。

補足日時:2011/04/08 02:12
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q連立方程式の解き方がいまいちぱっとしません だいたいの連立方程式は右図のようにしますがこの問題のよう

連立方程式の解き方がいまいちぱっとしません だいたいの連立方程式は右図のようにしますがこの問題のように勝手に足し合わしたりしていんでしょうか。

Aベストアンサー

肝心な数学の基礎が全く脱落しているようです。中学校一年の数学の教科書を取り出してしっかり復習しましょう。
・・・冗談でも嫌味でもなく、本当に大事なところが抜けてしまっている・・・深刻です。

小学校の算数から中学の数学になったときに計算が大きく変わりましたね。
1) 引き算は、その数の負数を加えること。
  負数とはその数に加えると0になる数
2) 割り算は、その数の逆数をかけ合わせること・
  逆数はその数にかけると1になる数
・・・この二つのことで、未知数であっても初めて計算が自由に扱えるようになった。
 小学校では、5個×3=15本だったし、3-2≠2-3、2÷3=3÷2だったのが、
       5(本)×3 = 3× 5 (本)、3+(-2)=(-2)+3、2×(1/3) = (1/3)×2
3) 両辺が=の関係である時、両辺に同じ処理をしても=の関係は変わらない。
 2x - 4 = 6  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄★
すなわち
 2x + (-4) = 6
  両辺に 4を加えると
 2x + (-4) + 4 = 6 + 4
 2x = 10      結果であるテクニックとしての[移項]は知っている
  両辺に(1/2)をかける
 2x × (1/2) = 10 × (1/2)
  交換則で
 x × 2 ×(1/2) = 5
  x = 5

たったこれだけを中学一年で一年かけて徹底的に学んだはず・・・中学数学の半分はこれと言ってもよい。
底が抜けているので、いくら解き方を覚えても役には立たない。
 [移項]処理は、「両辺に同じ処理をしても=の関係は変わらない」ことの結果にしか過ぎない。その結果--解き方だけ覚えて、理数科でもっとも肝心な「理由」を身につけてこなかった---でしょ!!!

 だから連立方程式は、未知数を一つずつ消していくという「消去法」というテクニックしか身についていない。繰り返しますが、理科や数学は解き方をいくら覚えても、せいぜい、その時の試験しかパスしない。

例えば、
 a + b = 0
 b - a + c = 0
 a + c - 1 = 0
という式があったとします。どうやって解きますか?
掃き出し法で解いてみましょう。

1) まず、式を下記のように変形します。
  a + b   = 0  一番下の式を加え
 -a + b + c = 0
  a   + c = 1

 2a + b + c = 1 中の式を引く
 -a + b + c = 0
  a   + c = 1
★ 両辺が=の関係である時、両辺に同じ処理をしても=の関係は変わらない。
   ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄★
  ここはわかりますか>>>だってすべての式は=で結ばれている。

 3a     = 1 3で割る
 -a + b + c = 0
  a   + c = 1

  a     = 1/3
 -a + b + c = 0
  a   + c = 1  一番上の式を引く

  a     = 1/3
 -a + b + c = 0  一番上の式を加えて
      c = 2/3

  a     = 1/3
    b + c = 1/3 一番下の式を引く
      c = 2/3

  a     = 1/3
    b   = -1/3
      c = 2/3

 これは「掃き出し法」と言われる解き方で、連立方程式を解く一番たくさん使われている方法です。特にコンピューターで計算しやすいためにコンピュータで解くときは100%この方法です。

 下記に、これを

  1  1  0 = 0
 -1  1  1 = 0
  1  0  1 = 1

と書き直して、簡単にする方法を説明しています。

参考)これってどうやって解くんですか?? - 数学 | 教えて!goo( https://oshiete.goo.ne.jp/qa/9194001.html )

 何度も繰り返しますが、「解き方」を覚えて、それを使って解くのではなく、なぜその方法で解けるのかを理解するようにしましょう。そうすれば、見たことない問題でも解けようになる。公式忘れたって公式をその場で作ればよい。

肝心な数学の基礎が全く脱落しているようです。中学校一年の数学の教科書を取り出してしっかり復習しましょう。
・・・冗談でも嫌味でもなく、本当に大事なところが抜けてしまっている・・・深刻です。

小学校の算数から中学の数学になったときに計算が大きく変わりましたね。
1) 引き算は、その数の負数を加えること。
  負数とはその数に加えると0になる数
2) 割り算は、その数の逆数をかけ合わせること・
  逆数はその数にかけると1になる数
・・・この二つのことで、未知数であっても初めて計算が自由に...続きを読む

Q何で数学I,II,III,IV,V,VIとか数学A,B,C,D,E,FじゃなくてI,II,IIIとA,B,Cなの

高校の数学についてのかなり阿呆な疑問なのですがなぜ数学I,II,III,IV,V,VIとか数学A,B,C,D,E,Fとかに統一しないで数学I数学A数学II学B数学III数学Cという風に区別されているのですか。
ところで自分はそんなに頭が良くないので優秀な回答を頂いても全く理解できない事も予想されます。
そういう場合は笑って許してください(汗)。

Aベストアンサー

>まーたぶん大した意味はないと思いますよ
ところが大ありなんですね。
既出の回答とも少し重なりますが,補足を兼ねてお答えしましょう。

現在の指導要領には次のような規定があります(来年の高校1年生から少し変わります)。
(1)「数学II」、「数学III」を履修させる場合は、「数学I」、「数学II」、「数学III」の順に履修させること。
(2)「数学A」については「数学I」と並行あるいは「数学I」に続いて履修させ、「数学B」及び「数学C」については「数学I」を履修した後に履修させること。
文部(科学)省は,「高校で数学を学ぶうえで中心(コア)となるもの」を易しいほうからI→II→IIIと配置し,それ以外をいわばオプションとしてA~Cとしたように思われます。

さらに,I~IIIとA~Cには非常に大きな違いがあります。

たとえば数学Iの内容は,もし学ぶのであればその内容(二次関数・三角比・場合の数・確率)を全部学ばないと,単位がとれません。数学II,数学IIIも同様です。
これに対して,数学Aは,数と式・平面幾何・数列・コンピュータの四単元からなっていますが,指導要領では「履修する生徒の実態に応じて、内容の(1)から(4)までの中から適宜選択させるものとする。」となっており,学校によって扱いはまちまちです。
コンピュータ(BASICのプログラミング)を省いている学校も結構ありますし,また参考書でも飛ばされていたりします。
(ところが入試だとプログラミングがある意味では一番易しいので,それを狙っていこう!という参考書もあったりします)
BやCも同様で,学校により扱いが異なります。

以上より,次のようなことが言えます。
たとえば,ある生徒が「学校で数学IIを習った」といっていれば,数学Iと数学IIの内容は全て授業でやっているはずです。
ところが,「数学Aを習った」というだけでは,実際に何を習っているかは分かりません。
このため,大学入試でも,数学A・B・Cはたいてい,それぞれの単元に対応する問題を並べておいてそのなかから選んで答えさせるようになっています。

No.2のカリキュラムは,1981年度に高校に入学した人までが学んだものです。
当時は,いわゆる受験校(進学校)の場合,おおまかにみて,
入試で数学を使わない人:「数学I→数学IIA」
数学を使う文系の人:「数学I→数学IIB」
理系の人:「数学I→数学IIB→数学III」
というパターンでカリキュラムを組んでいる学校が多かったように思います。
翌年登場したのが,「数学I」「基礎解析」「代数幾何」「確率統計」「微分積分」という科目分けで学んでいます。
その次(92年度入学者以降)に登場したのが現行のI~III,A~Cです。

>まーたぶん大した意味はないと思いますよ
ところが大ありなんですね。
既出の回答とも少し重なりますが,補足を兼ねてお答えしましょう。

現在の指導要領には次のような規定があります(来年の高校1年生から少し変わります)。
(1)「数学II」、「数学III」を履修させる場合は、「数学I」、「数学II」、「数学III」の順に履修させること。
(2)「数学A」については「数学I」と並行あるいは「数学I」に続いて履修させ、「数学B」及び「数学C」については「数学I」を履修した後に履修させること。
文部(科学...続きを読む

Q分数の連立方程式の解き方を教えてください。

分数の連立方程式の解き方を教えてください。
 a=4500000+60000/260000b
 b=4250000+30000/180000a

Aベストアンサー

[問題] は
 a = 4500000 + (60000/260000)b
 b = 4250000 + (30000/180000)a
なのですね。

ならば、
 a = 4500000 + (60000/260000)b   (1)
   ↓ 代入して、
 b = 4250000 + (30000/180000)a
  =4250000 + (30000/180000){4500000 + (60000/260000)b}
を、まず解くのでしょう。

b の項を左に集めれば、
 b - (30000/180000)(60000/260000)b = 4250000 + (30000/180000)4500000
 b(25/26) = 4250000 + 750000 = 5000000
 b = 200000*26 = 5200000   (2)

ここで (1) へ戻り、
 a = 4500000 + (60000/260000)*5200000
  = 4500000 + 60000*20
  = 4500000 + 1200000
  = 5700000

…かな?
検算してみて頂戴。。
  

[問題] は
 a = 4500000 + (60000/260000)b
 b = 4250000 + (30000/180000)a
なのですね。

ならば、
 a = 4500000 + (60000/260000)b   (1)
   ↓ 代入して、
 b = 4250000 + (30000/180000)a
  =4250000 + (30000/180000){4500000 + (60000/260000)b}
を、まず解くのでしょう。

b の項を左に集めれば、
 b - (30000/180000)(60000/260000)b = 4250000 + (30000/180000)4500000
 b(25/26) = 4250000 + 750000 = 5000000
 b = 200000*26 = 5200000   (2)

ここで (1) へ戻り、
 a = 4500000 + ...続きを読む

Q(a+c)(a-c)=(d+b)(d-b)でa,b,c,dがそれぞれ異なる自然数の時

(a+c)(a-c)=x
(d+b)(d-b)=x
とした時、xが成立する最小の自然数は15だというのはわかるのですが、それを証明する術を教えてください。

Aベストアンサー

命題はつぎのように書けます。
 自然数xは、2通りの自然数の積で表せる。
 それぞれの積は、別の自然数の和と差で表せる。
 このような自然数xのうち最小のものは15である。

1から15までで考えればいいので、全部確認してもいいと思いますが、条件を絞っていきます。

No.1さんのいうように
 xは、奇数か、4の倍数 (1)
2通りの積で表せることから
 xは素数ではない   (2)
 xは素数の2乗ではない (3)
以上より、候補は8か15になります。
 8=8x1=4x2
 15=15x1=5x3
別の自然数の和と差の積であることから、
 x=奇数x奇数 または 偶数x偶数
になり、候補は15のみになります。
 実際に別の自然数の和と差の積で表せるか確認すると
(a,c,b,d)=(8,7,4,1)
となることがわかり、条件を満たす最小値は15であることが分かります。

Qこの連立方程式の解き方を具体的に教えて下さい(恥ずかしながら忘れてしまいました(泣)) 答えは書いて

この連立方程式の解き方を具体的に教えて下さい(恥ずかしながら忘れてしまいました(泣))
答えは書いてあるのですが、連立方程式の解き方がカットされていて……


よろしくお願いします。

Aベストアンサー

上の式を360倍します。
 2x+3y=4320

下の式は150倍して変形します。
 x+y=1800
 x=1800-y

このxの値を先の式に代入します。
 2(1800-y)+3y=4320
 3600-2y+3y=4320
 y=4320-3600=720

このyの値を3番目の式に代入します。
 x=1800-720=1080

x=1080、y=720です。

Qにゃんこ先生の自作問題、Σ[a≠b,b≠c,c≠a, a,b,c∈{1,2,3,…,n}]abc

にゃんこ先生といいます。

a,b,c∈{1,2,3,…,n}
とします。

Σ[a≠b]ab
={Σ[k=1~n]k}^2 - Σ[k=1~n]k^2
={n(n+1)/2}^2 - n(n+1)(2n+1)/6
=n(n+1)(3n^2-n-2)/12

Σ[a<b]ab
=(1/2)Σ[a≠b]ab
=n(n+1)(3n^2-n-2)/24

Σ[a≦b]ab
=Σ[a<b]ab + Σ[a=b]ab
=n(n+1)(3n^2-n-2)/24 + n(n+1)(2n+1)/6
=n(n+1)(3n^2+7n+2)/24

ですが、
Σ[a≠b,b≠c,c≠a]abc

Σ[a<b<c]abc

Σ[a≦b≦c]abc
また、それらをm変数に拡張したものはどういった公式ににゃるのでしょうか?
にゃにかうまい考えがある気がするのですが、思いつきません。

Aベストアンサー

>それらをm変数に拡張したものはどういった公式ににゃるのでしょうか?

m変数に拡張したものは、次のようになりました。

f(n,m)=Σ[a[1]≦a[2]≦…≦a[m]](a[1]*a[2]*…*a[m]) とすると、
f(n,m)=S(n+m,n).
(S(n,k)は第二種スターリング数)
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html

計算例:
f(n,10)
=(99*n^9+1485*n^8+6930*n^7+8778*n^6-8085*n^5-8195*n^4+11792*n^3
-2068*n^2-2288*n+768)*(n+10)!/(367873228800*(n-1)!)


g(n,m)=Σ[a[1]<a[2]<…<a[m]](a[1]*a[2]*…*a[m]) とすると、
g(n,m)
=(-1)^m*s(n+1,n-m+1)
=(-1)^m*Σ[j=0,m]Σ[i=0,j](-1)^i/(j!)*i^(j+m)*comb(j,i)*comb(j+n,j+m)*comb(n+1+m,m-j).
(s(n,k)は第一種スターリング数)
http://oshiete1.goo.ne.jp/qa3563977.html
http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html

計算例:
g(n,10)
=(99*n^9-594*n^8-1386*n^7+6468*n^6+14091*n^5-12826*n^4-44132*n^3
-18392*n^2+14432*n+7680)*(n+1)!/(367873228800*(n-10)!).


h(n,m)=Σ[1≦i<j≦m をみたす全てのi,jに対してa[i]≠a[j]](a[1]*a[2]*…*a[m])
とすると、
h(n,m)=(m!)*g(n,m).

>それらをm変数に拡張したものはどういった公式ににゃるのでしょうか?

m変数に拡張したものは、次のようになりました。

f(n,m)=Σ[a[1]≦a[2]≦…≦a[m]](a[1]*a[2]*…*a[m]) とすると、
f(n,m)=S(n+m,n).
(S(n,k)は第二種スターリング数)
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html

計算例:
f(n,10)
=(99*n^9+1485*n^8+6930*n^7+8778*n^6-8085*n^5-8195*n^4+11792*n^3
-2068*n^2-2288*n+768)*(n+10)!/(367873228800*(n-1)!)


g(n,m)=Σ[a[1]<a[2]<…<a[m]](a[1]*a[2]*…*a[m...続きを読む

Q連立方程式の解き方

 0.8x-0.6y=6500
 
 0.4y-0.2x=1400

の連立方程式の解き方と途中式を教えて下さい。

Aベストアンサー

係数が小数のままだと計算を間違えやすいので、
両辺を10倍なり100倍なりすることにより桁を上げます。

0.8x-0.6y=6500
両辺を10倍すると
8x-6y=65000
両辺を2で割ります。
4x-3y=32500・・・※1

0.4y-0.2x=1400
両辺を10倍すると
4y-2x=14000
みやすいように項を入れ替えます。
-2x+4y=14000
両辺を2で割ります。
-x+2y=7000・・・※2

※1と※2の連立方程式となります。

ここでは加減法で解いてみます。
(※1)+4×(※2)
4x-3y=32500
-4x+8y=28000

5y=60500
y=12100

y=5500を※2に代入
-x+2*12100=7000
-x=-17200
x=17200

よってx=17200,y=12100・・・答え

別解)代入法で連立方程式を解く
※2よりx=2y-7000・・・※3
これを※1に代入
4(2y-7000)-3y=32500
8y-28000-3y=32500
5y=60500
y=12100
これを※3に代入すると
x=2*12100-7000=17200

係数が小数のままだと計算を間違えやすいので、
両辺を10倍なり100倍なりすることにより桁を上げます。

0.8x-0.6y=6500
両辺を10倍すると
8x-6y=65000
両辺を2で割ります。
4x-3y=32500・・・※1

0.4y-0.2x=1400
両辺を10倍すると
4y-2x=14000
みやすいように項を入れ替えます。
-2x+4y=14000
両辺を2で割ります。
-x+2y=7000・・・※2

※1と※2の連立方程式となります。

ここでは加減法で解いてみます。
(※1)+4×(※2)
4x-3y=32500
-4x+8y=28000

5y=60500
y=12100

y=5500を※2に代入
-x+2*12100=7000...続きを読む

Q区間(a,b),[a,b),(a,b],[a,b]において

b-aのことを英語で正式になんというのでしょうか?

Aベストアンサー

lengthのことでしょうか。

The length of the bounded intervals (1), (2), (3), (4) is b-a in each case.

参考URL:http://encyclopedia.laborlawtalk.com/open_interval

Qこの連立方程式の解き方を教えてください

この連立方程式の解き方を教えてください

Aベストアンサー

分数だから、ややこしく感じるのでしょうね。
上の式は両辺を15倍に、下に式は両辺を12倍してみて下さい。
①、② の様な整数の式になると思います。

3(2x+3y)=150ー5y ・・・①
9xー4(yー3)+12x=60 ・・・②

①を整理すると、6x+9y=150 ・・・③
②を整理すると、21x-4y=48 ・・・④

③、④ ここまでくれば、普通の連立方程式ですから
簡単に解けると思いますが。
 因みに、x=4,y=9 になると思いますが、計算は確認して下さいね。

QA={Φ,{{a,b},{a,c}}} B={Φ,{a,b},{a,c

A={Φ,{{a,b},{a,c}}} B={Φ,{a,b},{a,c}}のとき、A∩Bは{Φ}なのかそれとも{a,b}などを含むのかどうかがわかりません。 わかる人がいらっしゃるなら教えてください。お願いします。

Aベストアンサー

落ち着いて考えれば分かるはず。
ただ、若干の慣れは必要かも・・・。

・考え方
Aの元は、Φと{{a,b},{a,c}}}の2個。
Bの元は、Φと{a,b}と{a,c}の3個。
共通するのは、Φだけ。

よって、A∩Bの元はΦだけ。
つまり、A∩B={Φ}。


人気Q&Aランキング