粒子の波動関数を

Φ=exp(iS/h)

として、これをシュレディンガー方程式に代入したものがプランク定数hについての恒等式だとして議論を進めますが、hは、古典的極限を考えるときは確かにパラメータですが(h→0としてよい)、式の中では定数なので何故このような論理がたつのかよくわかりません。

ここではhをどのように扱っているのでしょうか?

A 回答 (1件)

世界的な権威から精緻で格調高くレベルの高い回答が多数寄せられて心強い限りですね。

最先端の難問に自信を持って回答されている方が多数いらっしゃるのですから、こんな基礎的な問題ができないはずがありません。「回答が来ない」などど思ってはいけません。『無』という大変深遠な回答が寄せられているのです。
プランク定数は作用の次元を持っています。Sも作用の次元を持っています。hは定数ですが、Sとhの相対的な大きさが問題です。Sが(ある範囲で)変わっても成り立つ方程式を求めるため、hをパラメータとして展開するのがWKB法だと思います。
    • good
    • 1
この回答へのお礼

深いですね。おかげで自分も同じ結論に至りました。今後はこれを頼りにしすぎずに、自分で考えることを大切にしたいと思います。

お礼日時:2011/04/20 21:22

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q物理学を学んだ学生の就職について

物理学を学んで修士課程を終えたとして就職でどうのような選択肢がありますか?

Aベストアンサー

buturidaisukiさん、こんにちは。

就職のことはやはり気になりますよね。同じようなことを普段よく尋ねられるので、多くの卒業生を見てきた経験から現実にどうかということを書かせていただきます。

まず、結論から書きますと、ANo.1~ANo.3の皆さんも書かれているように、本人さえしっかりしていれば、大抵の会社は選択肢に入ると思います。

ANo.4さんは、分野は影響は受けると書かれていますが、ある程度、そういうこともあるでしょうが、それほどではないと私は思います。というのは、元々、理学部を卒業する場合には、勉強した「知識」をそのまま使って企業で活躍するというセンスよりも、むしろ、そこで習得した「能力」を生かすというセンスだからです。逆にもし工学部を卒業しても、そこで学習した知識がそのままどんぴしゃで企業でも使えるケースは珍しいようです。

また、物理の中での理論と実験の違いですが、私の知る限り、理論だと実験よりも会社には不利ということはないと思います。それには二つ理由があります。一つは現代の産業の現状は、IT系に重点が移ってきていて、理論系なら殆どの場合コンピューターをかなり使いますので、その面でかえって有利であること。もう一つは測定器や作業機械の使い方などは、実験系だからといって同じ機械を使うとは限りませんし、どちらにしても入社後に勉強するケースのほうが多いと思われるからです。

企業の中で、理学部出身の人が工学部出身の人よりも少ない主な原因は、日本中で工学部の定員が非常に多いことでしょう。私の見る限り、卒業生が就職で苦労するケースは、分野というよりも、むしろ個々人のパーソナリティに依ることが多いように思われます。企業では周りの環境に柔軟に順応してくれる人、しっかり意思疎通の出来る人を好むでしょうし、当然、企業の利益にかなわないことをしたいという人は、どんな学部の卒業生でも取らないでしょう。


次に具体的な現状を書きます。どこの大学とは、もちろんここでは書けませんが、卒業生の就職先はやはりIT係を中心に製造業が多いです。それは元々日本の産業構造自体がIT係に重点が移ってきているためだと思います。一言にIT係といっても、かなり幅が広いですし、IT係以外の製造業も多いです。どんな製造業でも最近はコンピューターはかなり使うと思われます。

製造業の中には当然、民間企業の研究所に就職するケースもあります。民間企業の研究所では、ごく一部の例外を除いて、その企業の利益に直結することを研究します。その内容は、物理学に基礎を置いた研究もありますし、物理学とは直接の関係のない研究をすることもあります。物理の卒業生はどちらの方向にも進んでいます。ただし「直接の関係のない」と言っても、物理はあらゆるものの基礎になりますから、殆どのものは何らかの関係はあります。

次に多いのは、公務員や中学高校教諭だと思います。その場合は、もちろん、公務員試験の勉強や、教員免許をとり教員採用試験の勉強をする必要があります。

製造業に比べれば、数は少なくなりますが、商社や金融関係に就職した人もいます。また特殊な例ではパイロットになった人もいます。


せっかく物理学を勉強したのに、就職した後に直接に関係のないものをやるのは勿体ないとか、しんどいとか思われるかもしれません。しかし、ANo.3さんも書かれているように、物理学というのは、あらゆる学問や科学技術の基礎であり、また、知識そのものを使わなくても、物理学を学ぶ過程で習得した「現実に根ざした論理的思考」というのは、どんな分野にも共通に必要なものなのです。ANo.4さんも書かれているように、「仮説・検証・修正」という物理学の方法は、あらゆることに適用が可能です。

また、「知識の陳腐化」ということがあります。技術というものは日進月歩ですから、大学でどんな分野の学問をした場合でも、どのみち入社後にも勉強をし続けていかないといけません。しかし理学系と工学系の違いは、理学部で勉強したことは、時間が立って成り立たなくなるようなことではないというところです。物理で言えば、力学や電磁気学などの知識が陳腐化することは未来永劫ありません。それらは自然界の法則だからです。ところがある特定の「技術」というものは、多くの場合数年で陳腐化してしまいます。

さらに、逆に基礎的な知識が必要になったときに、技術だけを学んでいた人が基礎に立ち戻って勉強しなおすのは、大変なエネルギーが必要になります。一度でも基礎を十分に勉強したことがある人は、忘れてしまっていても、少し勉強すれば思い出すことができます。基礎をしっかり勉強した上に応用を勉強するほうが、応用だけを勉強しているより安心です。

これは教育関係に進む場合も同様だと思います。やはり理学部でしっかりその分野の内容を勉強しつつ教員免許も取るほうが、教育学部で教員免許をとるよりも好ましいと、個人的には思っています。(両方やるのは確かに大変ですが。)


最後に、修士課程に進むメリットについて付け加えます。学部で、およそ力学、電磁気学、量子力学、熱統計力学を学習するわけですが、それは学問の基礎の部分です。卒業研究~修士課程で、研究(らしきもの)に手を染めることにより、その基礎部分の知識の本当の意味が、より正しく深く理解できます。また、現実の問題を考えることにより、「問題解決能力」も身につけることができます。研究の世界では必要に応じて問題を自分で整理して設定する能力が求められます。誰かがきれいに作った問題を解くだけの話ではなくなってくるのです。そのような能力はどんな分野に就職しても必要とされるものです。大学院ではその部分も学ぶことが出来るはずです。

buturidaisukiさん、こんにちは。

就職のことはやはり気になりますよね。同じようなことを普段よく尋ねられるので、多くの卒業生を見てきた経験から現実にどうかということを書かせていただきます。

まず、結論から書きますと、ANo.1~ANo.3の皆さんも書かれているように、本人さえしっかりしていれば、大抵の会社は選択肢に入ると思います。

ANo.4さんは、分野は影響は受けると書かれていますが、ある程度、そういうこともあるでしょうが、それほどではないと私は思います。というのは、元々、理学部を...続きを読む

Q剛体振り子の周期

剛体振り子の運動方程式 I(θの2回微分)=-Mghθ
から、普通に
周期T=2π√(I/Mgh)
と教科書に書いてあるのですけど、この周期Tはどうやって求めたのでしょう?計算の仕方がわからないので教えてください☆お願いします!
T=2π/ωと、ω=(θの微分)を用いるのはわかるんですけど・・・。

Aベストアンサー

これはθに関する微分方程式を解かなければいけません。
すなわち
dθ^2/dt^2 = -Aθ
(A=Mgh/I)
これは、よく教科書に書いてある形の微分方程式なのですが、解き方をここに書くのは、ちょっと面倒なのでご勘弁ください。

代わりに、方程式から周期を求める簡易な方法を紹介します。

θはtの三角関数になることは、わかっているものとします。

そうすると
θ = a・sin(ωt+c)
tで一回微分すると
dθ/dt = ab・cos(ωt+c)
もう1回tで微分すると
I = dθ^2/dt^2 = -a・ω^2・sin(ωt+c)

これらを当初の方程式に代入すれば
-a・ω^2・sin(ωt+c) = -A・a・sin(ωt+c)
よって
ω=√A=√(Mgh/I)
T=2π/ω=2π√(I/Mgh)

Q古典力学と量子力学

古典力学と量子力学との違いって何なんですか?
物質によって古典力学と量子力学を使い分けて計算するのですか?

Aベストアンサー

>古典力学と量子力学との違いって何なんですか?

古典力学は、原子とか電子とかいう粒子論が認められる前に
出来上がった学問で、物質内部のミクロな構造のことが考慮されて
いないんです。

 だから大雑把に言うと、電子の運動とかミクロの世界を
計算するときには量子力学を使うのですが、そのミクロの
世界の物理的効果が、目に見えるマクロの世界に出てくる
ことがあって、そういうときは目に見えるでかい(マクロ)の世界
の現象も、量子力学の考え方で計算するんです。

 実際、量子力学の発想は、目に見える光の強度を考えた
ときに出てきたんです。鉄を溶かす溶鉱炉から出て
くる光で、溶けている鉄の温度を予想しようとしたときに
古典力学の考え(光は電磁波という連続した波であるという
マックスウェル方程式の考え方)では計算できない事が分かった
ため、プランクという人が、計算式を検討したところ、光のエネルギー
が不連続、つまり量子化されていることに気づいたんです。
これは現在、「黒体輻射の問題」と言われていますが。

>物質によって古典力学と量子力学を使い分けて計算するのですか?

 扱うエネルギー、或いは問題になるエネルギーの大きさで使い分けられて
いると思います。光子1つ分のエネルギーとか、非常に小さな
エネルギーが問題になるときは、量子力学を使うと
いう考え方でいいと思いますが、先の「黒体輻射の問題」の
ように、現象事態は目に見える大きな世界の話の場合もある
わけです。

>古典力学と量子力学との違いって何なんですか?

古典力学は、原子とか電子とかいう粒子論が認められる前に
出来上がった学問で、物質内部のミクロな構造のことが考慮されて
いないんです。

 だから大雑把に言うと、電子の運動とかミクロの世界を
計算するときには量子力学を使うのですが、そのミクロの
世界の物理的効果が、目に見えるマクロの世界に出てくる
ことがあって、そういうときは目に見えるでかい(マクロ)の世界
の現象も、量子力学の考え方で計算するんです。

 実際、量子力学の...続きを読む

Qビリアル定理とは何ですか?

ある論文でビリアルというものが出てきて初めて知ったのですが、ビリアル定理とは何なんでしょうか?
これに関して書いてある本があれば教えて下さい。

それとビリアル数の物理的に意味についても教えて下さい。

Aベストアンサー

ビリアル定理は統計力学では非常に重要な定理です。実在気体の状態方程式などを導くためにも、この定理は欠かせません。統計力学の教科書であれば、気体分子運動論の章に必ず記述されているはずです。

ビリアル(Clausiusのvirial)というのは、-1/2<ΣF・r>という量ですが、これが、「運動エネルギーの平均と等しい」というのがビリアル定理です。

わかりやすい説明は、ゴールドスタインの「古典力学」にもありますので、図書館等で読んで下さい。

Q電子がポテンシャル障壁を反射・透過する時

電子がポテンシャル障壁を反射もしくは透過する時に、波動関数の位相の変化みたいな事は起きないのですか?反射と聞くと自由端・固定端反射や光の屈折などの位相のズレが生じる事を思い出してしまい、波動関数は境界で連続ではありますが、電子が反射されたりトンネルしたりする際に何かしらの変化がありそうな気がしました。
それともやはり古典的な物理現象と量子力学的な説明を一緒に考えるのは不適切ですか?

Aベストアンサー

散乱問題の話は蛇足だったかもしれませんね。
WKB近似など考えなくても、
例えばx<0でV=0, x>0でV=V0という単純な模型で、x<0からエネルギーE(E>0,E>V0)の粒子を入射する場合を考えれば、V0の正負によって固定端反射になったり自由端反射になる事は比較的容易に確認できると思いますよ。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報