カーボンナノチューブの水素吸・脱蔵特性についてご教示ください。

A 回答 (2件)

カーボンナノチューブの水素吸蔵については最近新聞でもよく話題になっていますが、依然として「どのようなチューブを使うと、どのような条件で、何パーセントくらい吸蔵する」ということは不透明なままです。


もちろんいくつかの報告(論文)は出ていますが、学界全体としての定見が出るには至っていないというところでしょうか。

MiJun氏が参考サイトとして挙げている曽根田先生のページですが、ページ作成が1998年であることにご注意ください。この分野は1,2年で様相が変化しますからその後の動向まで含めて調べた方が良いでしょう。
    • good
    • 0
この回答へのお礼

御教示いただき、厚く御礼申し上げます。私は、水素吸蔵合金について研究をしておりまして、新素材に興味をもち、恥ずかしながら質問した次第です。ありがとうございました。

お礼日時:2001/04/30 02:12

以下の参考URLサイトは参考になりますでしょうか?


「NIRE:カーボンナノファイバーによる水素吸蔵」

さらに、以下の参考URLサイトには関連質問の回答がありますが、参考になりますでしょうか?
http://www.okweb.ne.jp/kotaeru.php3?q=63346
この回答で#3に紹介したサイトも参考にして下さい。

ご参考まで。

参考URL:http://www.aist.go.jp/NIRE/publica/news-98/98-12 …
    • good
    • 0
この回答へのお礼

御教示いただき、厚く御礼申し上げます。私は、水素吸蔵合金について研究をしておりまして、新素材に興味をもち、恥ずかしながら質問した次第です。ありがとうございました。

お礼日時:2001/04/30 02:12

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q太陽光発電の蓄電池問題を水素吸蔵合金が解決する! 水素吸蔵合金は容量の1000倍の水素を蓄積出来る

太陽光発電の蓄電池問題を水素吸蔵合金が解決する!

水素吸蔵合金は容量の1000倍の水素を蓄積出来るらしいです。

トヨタのミライの蓄容量と効率はどのくらい上ですか?

あと従来の太陽光発電から電気を蓄積するパナソニック?の蓄電池が世界ナンバーワン効率って言ってた気がしますがこれもこの清水建設が開発した水素吸蔵合金に比べるとどれくらいの倍率になってますか?

清水建設が開発して製造元はどこに発注してるとか分かりますか?

これからは水素ビル、水素シティの時代ですね!

Aベストアンサー

ここ「その他(学問・教育)」で聞く内容か?
お前の質問は常にカテ違いだが、私は過去の質問で、それについて「Gooのアプリ」を使わずにスマホから↓に行けるか聞いている。

【カテゴリー一覧】
https://oshiete.goo.ne.jp/category/list/

それに対して、お前は「アプリの方が質問が楽」だと言っている。
(しかし、私が聞いているのは「可能か否か」であって、お前が楽かどうかではない)




>太陽光発電の蓄電池問題を水素吸蔵合金が解決する!

水素=電力ではないと思うが。

お前が言っていることは、以下の事か?

現在の蓄電池は効率が悪い。(それが自然エネルギーのネックになっている)
その電力で水素を作って水素吸蔵合金に貯めておけば問題は解決する。



>水素吸蔵合金は容量の1000倍の水素を蓄積出来るらしいです。

「容量」の意味が不明。
(言っておくが「体積」と「容量」は全く違う意味だぞ)

出来るというソースを要求する。
「~らしい」という推測や願望による論理を考察させるな。



>トヨタのミライの蓄容量と効率はどのくらい上ですか?

トヨタの「ミライ」とは、車の事か?
自分がたまたま知った知識=世間の常識 と思うな。

そもそも、何の蓄容量と効率と比較しているんだ?



>あと従来の太陽光発電から電気を蓄積するパナソニック?の蓄電池が世界ナンバーワン効率って言ってた気がしますがこれもこの清水建設が開発した水素吸蔵合金に比べるとどれくらいの倍率になってますか?

水素と電力の容量を比較することに意味があるのか?

この場合、問題は「その水素でどれだけの発電ができるか」であり、それは発電システムを無視しては語れないと思うが。


それから、お前の文章は話の順序がおかしい。
(まず最初に「清水建設が水素吸蔵合金を開発した」という「事実」を話せ)

それに、お前は「清水建設の水素吸蔵合金」について何の情報も出していないんだが、そもそも製品化されているのか?



>清水建設が開発して製造元はどこに発注してるとか分かりますか?

製造しているというソースを要求する。
開発=製品(販売&実用化)ではないぞ。

ここ「その他(学問・教育)」で聞く内容か?
お前の質問は常にカテ違いだが、私は過去の質問で、それについて「Gooのアプリ」を使わずにスマホから↓に行けるか聞いている。

【カテゴリー一覧】
https://oshiete.goo.ne.jp/category/list/

それに対して、お前は「アプリの方が質問が楽」だと言っている。
(しかし、私が聞いているのは「可能か否か」であって、お前が楽かどうかではない)




>太陽光発電の蓄電池問題を水素吸蔵合金が解決する!

水素=電力ではないと思うが。

お前が言っていることは、以下...続きを読む

QA特性,F特性による音圧・騒音レベル(dB)の違い

ある同じ音の音圧・騒音レベルを測定した場合,
A特性の補正を考慮した,騒音レベル(dBA)と
F特性の音圧レベル(dB)では値としてどれくらい差が出るものなのでしょうか?

基本的に低周波メインの音の方が差が現れる(F特性が大きくなる)と考えているのですが,間違いないでしょうか?

比較したいのは,打ち上げ花火の音です.実際の観測結果として700m・110dBという結果が騒音関係の文献にあるのですが,測定方法に関しては記載されていませんでした.しかし,”音圧レベル”や”周波数分析の結果”という言葉の使い方からF特性,少なくともC特性で測定したものと推察しています.これをA特性だった場合のだいたいの騒音レベルが知りたいのです.

また,A特性・F特性をグラフではなく実際の値(式?)として欲しいのですが,どこで手に入れられるのでしょうか?JIS規格でしょうか?

Aベストアンサー

http://www.onosokki.co.jp/HP-WK/c_support/newreport/noise/souon_index.htm

ここに式があります
7-1 音圧レベル

A特性は人間の耳に合わせて補正してます
フイルターで補正をするだけなので・・
補正する式は無いです
しいてやるならば周波数別の騒音値に補正値で補正を行うだけです
補正数字はグラフから読んで下さい

F特性は フラット 特性で補正は無いです

差は補正曲線を見れば判ります

花火の音は低音が多いので、差はかなりでますし

又、花火は爆破音は瞬間なので、騒音計のファーストに設定しても測定器が追いつきませんので誤差が大きくなります
10dB(以上)程度誤差はでますよ

A と F ならば 補正の関係で40dB程度差がでます
F と C            2~3dBぐらいですね

7-5 時間率騒音レベル
から7-8
に ピーク値の説明があります

花火はピーク値で測定しないといけなですので
1秒間の平均値とならば・・・20dB程度差がでそうな気がしますね

http://www.onosokki.co.jp/HP-WK/c_support/newreport/noise/souon_index.htm

ここに式があります
7-1 音圧レベル

A特性は人間の耳に合わせて補正してます
フイルターで補正をするだけなので・・
補正する式は無いです
しいてやるならば周波数別の騒音値に補正値で補正を行うだけです
補正数字はグラフから読んで下さい

F特性は フラット 特性で補正は無いです

差は補正曲線を見れば判ります

花火の音は低音が多いので、差はかなりでますし

又、花火は爆破音は瞬間なので、騒音計のフ...続きを読む

Q風力発電でどれぐらいの水素ができるの

風力発電で水を分解して水素が作れるそうですが、現在の技術で、どれぐらいの水素が出来るのでしょうか。
と言っても、発生する水素の量を知ってもよく分からないので、具体的に聞くと、よくある家庭用の小型の風車を、一日回転させて出来る平均量の水素で、リッター7キロメートルぐらい走る自動車を、何キロメートルぐらい走らせることが出来るのでしょうか。
研究している人がいれば、教えてください。お願いします。

Aベストアンサー

考え方を説明しますから、条件を仮定して計算してください

1: H2+1/2O2⇔H20+xJ  x 水素と酸素の結合反応(酸化反応)の発熱量=電気分解に必要なエネルギー
(水素2gと酸素16gから水18gを生成する際の発熱量)

2: J/s = W  1秒当たり1Jを消費/生成するのが1W 1Wを1時間で3600J

3:前記の反応の際、エネルギー利用/生成効率は 100%は不可能 通常は 30~80%程度

4:電気分解で発生した水素を貯蔵するために 圧縮・液化が必要、このためにもエネルギーを必要とする

現状では、水素の酸化による発生エネルギーを基準にして、水の電気分解で水素を発生・貯蔵するには 10倍程度のエネルギーを必要とするでしょう

ものすごく大雑把に言いますと ガソリン1リットルは 電力量 4KWH程度になります

エネルギー変換効率は数倍の幅があります、各段階での変換効率を仮定すれば、それなりに計算できます(実態との乖離は大きいでしょうが)

Q仕上げ記号をご教示ください。

機械加工を勉強しています。
加工表面粗さの表記法は理解出来ましたが、たとえば溶接を施す場合、仕上げ表記において、溶接の種類、表面粗さなどの表記の規定はないのでしょうか?
図面を見た段階で溶接の要求指示内容は明確になるものでしょうか?
ご教示いただければ幸甚であります。

Aベストアンサー

グラインダ仕上げの場合は、Gと添書きします。
これは、よく使われます。平らに仕上げるときは、溶接記号に、線を添書きし、さらにGと添書きします。円弧状に仕上げる特は、円弧です。
溶接部分の機械加工は、できないところもあると思います。強いて書くとすると、逆三角形一個くらいでしょうか?

Q水素ガス圧と冷却効果の関係性(発電機)

発電機の勉強をしているのですが、わからないことがあるのでご教示願います。

発電機の冷却方式に水素冷却がありますが、「水素ガスの圧力をあげることによって冷却効果が高まる」とあります。これはなぜですか?圧力を上げることで風量を多くして、それで高まるということなんでしょうか?

題名とは関係ありませんが、もう一点ご教示ください。
2.なぜ「水素」なんですか?純度が高ければ爆発の可能性が無いと言えど、爆発の危険性はあります。熱伝導率が同等の「ヘリウム」を採用しないのはなぜなのでしょうか?

詳しい方がいらっしゃれば回答していただけると幸いです。よろしくお願いいたします。

Aベストアンサー

1.
これは間接冷却についてではないでしょうか。
間接式では、圧力を上げても直接式のように回転損失に影響しませんし、密度を高くした方が水素の性質を効率よく引き出せるという事だと思います。
圧縮にる温度上昇も、5MPa程度まではそれほど起きないようです。
http://www.hess.jp/hess_contents/benrijiten/suisokisodata.html

2.
熱伝導率は水素もヘリウムもほぼ同じですが、比熱が全然違います。
3倍近くも水素の方が高いのです。
http://www.ohm.jp/download/technical/tech_05.pdf
その為、熱を早く伝える速度は両者同等ですが、冷却剤自信の温度上昇度合いが違う為、優れている方の水素を使用しているという事のようです。

Qエミッタ接地増幅器の入出力・周波数・位相特性について

実験で、エミッタ接地増幅器のいろいろな特性を調べました。そこで理論値を出し実験値と比べてみようと思ったのですが、理論値の出し方が分からないのがありした。今回実験で使用した増幅回路はhttp://ja.wikipedia.org/wiki/%E5%A2%97%E5%B9%85%E5%9B%9E%E8%B7%AFのエミッタ接地の回路と同じです。周波数が中域の(コンデンサを無視できる)ときの利得の周波数特性、位相特性(π[rad])、入出力特性(Vin、Vout)の理論式のだしかたはわかるのですが、周波数が高域、低域のときの各特性の理論式と低域、高域遮断周波数のだしかたがよく分かりません。感覚的にですが、どの域でも共通な式があり、各域によってコンデンサが開放や短絡され式が変化するような気がしています。参考書やネットで調べたのですが、明確な式が載っておらず困っています。基本的なこととは思いますが、どなたか教えてください。お願いします。

Aベストアンサー

共通な式というのは、コンデンサを入れて計算した式ということですね。
Denkigishiさんのコメントの通り、この回路は低域特性はコンデンサや抵抗の値で決まり、高域はトランジスタの特性で決まります。したがって広帯域に渡ってちゃんと計算するのなら、トランジスタの交流等価回路(SPICEパラメータ)を取り入れる必要があります。しかし、それではあまりに複雑なので、直流的な等価回路を使って計算する方法を紹介します。

hパラメータを使ったトランジスタの直流等価回路は、厳密には【図1】のようになりますが、実用的には【図2】のように簡略化したものを使います[1]。すると、問題のエミッタ接地回路 [3] の交流的な等価回路は【図3】のようになります。図3では、負荷抵抗RLを追加してあります。なぜなら、これがないと、出力コンデンサCoutの影響が出ないからです。この回路から電流と電圧の式を立てると

i0 = j*ω*Cin*( v0 - v1 )
i1 = ( v1 - v2 )/hie
i0 - i1 = v1*( 1/R1 + 1/R2)
i1 + i2 = ( 1/Re + j*ω*Ce )*v2
i2 + i3 = -v3/Rc
i3 = j*ω*Cout*( v3 - v4 )
i3 = v4/RL
i2 = hfe*i1 ← 図2から

ですから、電圧利得( v4/v0 )は

v4/v0 = -j*ω*Cin*( 1/Rc + j*ω*Ce )*hfe*hie/( 1 + hfe )/[ 1/RL + { 1 + 1/( j*ω*Cout*RL ) }/Rc ]/[ hie*( 1/hie + 1/R1 + 1/R2 + j*ω*Cin )*{ hie*( 1/Re + j*ω*Ce )/( hfe + 1 ) + 1 } -1 ]

となります(筆算なので間違ってるかも)。この式を変形して、v4/v0 = A + j*B の形にすれば、利得 = √(A^2+B^2)、位相(入力基準)= atan(B/A) [rad] となります。Excelの複素数計算の関数を使えば、利得=IMABS( )、位相=IMARGUMENT( )です。

なお、hパラメータには周波数依存があるので(データシートのは270Hzでの値)、Denkigishiさんのコメントの通り、これを考慮しないと高域での特性が現実と違ってきます。トランジスタの高周波等価回路の例を資料 [4] に示します。

     i1 →              ← i2
  B ─ hie ─┐   ┌────┬── C     v1 = hie*i1 + hre*v2
   ↑     │+ │      │   ↑     i2 = hfe*i1 + hoe*v2
   v1    hre*v2 ↓hfe*i1  hoe   v2
   │     │- │      │   │
  E ────┴─-┴────┴── E

【図1】 hパラメータを使ったトランジスタの等価回路

     i1 →        ← i2
  B ─ hie ─┐  ┌───── C       v1 = hie*i1
   ↑     │  │      ↑        i2 = hfe*i1
   v1     │  ↓hfe*i1  v2
   │     │  │      │
  E ────┴─-┴───── E

【図2】 簡略化した等価回路

     → i0  v1   → i1    ← i2 v3  → i3
   v0 ─Cin─┬─── hie ┐  ┌──┬──Cout──┬─ v4
         │        │  ↓   │         │
   i0-i1 ↓ R1//R2     └─-┤v2  Rc ↑i2+i3  RL ↓i3
          │           │   │        │
         ┷      i1+i2 ↓│   ┷        ┷
                      ├─┐               ┷ = GND
                     Re Ce               R1//R2 = R1*R2/(R1+R2) 
                      ┷ ┷

【図3】 結合コンデンサのあるエミッタ増幅器の等価回路

[1] 最も一般的なNPNトランジスタの2SC1815Yを使った場合、データシート [2] から、DC的なコレクタ電流が Ic = 1mA のときのhパラメータは、hie = 4.5 kΩ、hre = 0.5×10^(-4)、hfe = 160、hoe = 2.5μSとなっていますが、このうち hre と hoe は小さいので、これらを無視すると、図2に示したような等価回路になります。
[2] 2SC1815データシート(3ページの「hパラメータ-Ic」) http://www.semicon.toshiba.co.jp/docs/datasheet/ja/Transistor/2SC1815_ja_datasheet_020129.pdf
[3] エミッタ接地回路 http://ja.wikipedia.org/wiki/%E7%94%BB%E5%83%8F:Common_emitter.png
[4] トランジスタの高周波等価回路  http://ns.cqpub.co.jp/toragi/TRBN/trsample/2002/tr0209/0209sn7.pdf

共通な式というのは、コンデンサを入れて計算した式ということですね。
Denkigishiさんのコメントの通り、この回路は低域特性はコンデンサや抵抗の値で決まり、高域はトランジスタの特性で決まります。したがって広帯域に渡ってちゃんと計算するのなら、トランジスタの交流等価回路(SPICEパラメータ)を取り入れる必要があります。しかし、それではあまりに複雑なので、直流的な等価回路を使って計算する方法を紹介します。

hパラメータを使ったトランジスタの直流等価回路は、厳密には【図1】のようになり...続きを読む

Q水素ステーションを発電所にする。

停電した時に水素ステーションにミライを持って行って、電線に繋げばいいのである。どんなのでは足りないと言うのであれば、大型トラックに水素発電システムを積んで、電線に繋げば簡単に停電から復旧することができないだろうか?
 そう考えると国の補助金もインフラの整備になる。熊本の地震で1週間も停電だったところもありますので、検討して欲しいと思います。いかがでしょうか?

Aベストアンサー

> 例えば離島の電気があります。

詳しくは知りませんが、離島って頻繁に停電しているのですか?
自前で発電所を持っている島なら、台風などの災害や需要と供給のバランスが
合わなかったなどで停電するイメージがわくのですが、
海底ケーブルで電力を引いている島って頻繁に停電するのですか?

で、実際に停電になったとき、早く電気が復旧したほうが良いのですが、
これまでの皆様の回答から、各家庭にリーフなどをつなぐシステムはあっても、
電線に直接つなぐことはできないのですよね。
となると、リーフ1台でどれくらいの家庭の電力をまかなえるのかは知りませんが、
各家庭にミライやリーフなどがない限り、家電などを家のコンセントにつないで
これまでとおりの生活を行うということはできないのですよね。
そんなときに情報収集の観点から、携帯電話やテレビなどがあるに越したことは
ないのですが、そのレベルなら持ち運びできるガソリンの発電機でも事は足りませんか?

これまでの話って、持論を曲げないようにするためにいろんな想定をしていますが、
たま~にしか起きないことに対する備えとして、現状、たま~にしか使わない
インフラを導入しろ(それも離島や過疎地に)と言っている様な気がします。
水素ステーションの本来の目的は、燃料電池車のエネルギーの充填です。
でも、使いようによっては非常時の電源として使うことができる、
という考えはありだと思うのですが、非常時に対応するためということが
先に来ていたら本末転倒ではありませんか?
何年先かは分かりませんが、燃料電池車が普及して、普通に水素ステーションが
あるような時代になっていたら話は別かとは思いますが。

> 例えば離島の電気があります。

詳しくは知りませんが、離島って頻繁に停電しているのですか?
自前で発電所を持っている島なら、台風などの災害や需要と供給のバランスが
合わなかったなどで停電するイメージがわくのですが、
海底ケーブルで電力を引いている島って頻繁に停電するのですか?

で、実際に停電になったとき、早く電気が復旧したほうが良いのですが、
これまでの皆様の回答から、各家庭にリーフなどをつなぐシステムはあっても、
電線に直接つなぐことはできないのですよね。
となると、リーフ1台...続きを読む

Qトランジスタの静特性と動特性

トランジスタの静特性と動特性の違いがよくわかりません。
また、静特性と動特性との間にはどんな関係があるのですか?

「静特性」や「動特性」で調べてみても、その言葉自体が既にわかっている前提で書かれているページばかりで困っています。
よろしくお願いします。

Aベストアンサー

静特性とはDC特性と言われるものです。
特性ですので、何かのパラメータを変数として、その結果何かの出力なりが変わると言うものです。DC特性ですので、時間軸を持たない特性になります。
例えばある任意のTrについて、IC-Vbe特性やVbeの温度特性などが良い例ですね。Icが変化したらVbeはどうなるか。温度が変化したら、Vbeはどうなるか。時間は問われていません。
逆に動特性とは過渡特性とも言えます。TrがOnからOffになるときの動作や、入力を振った場合の出力の変化など。これらはOn-Offや入力のスピードにも依存します。よって時間という概念も問われます。よって動特性と言います。

Q水素での発電キットはどちらで販売されていますか?

いつもお世話になっております。
模型・ラジコンのジャンルにしようかと思ったのですが、あまりにもマニアックな気がしたのでこちらのほうがよいかと思いましたのでこちらに質問させていただきました。

先日、H-racerというものを知り、水素エンジンについて興味がわきました。
そこでなのですが、H-racer以外にも水素を水を電気分解して作り出すことができ、それを使用して電気を発電できるというキットは他に販売されていますでしょうか?
なるべくなら、H-racerよりお安いほうがいいのですが、それ以上でも構いません。
よろしくお願いします。

Aベストアンサー

↓こんな会社があるみたいです。まだ学習用キットでも一万円くらいはするみたですね。

ちなみに、競技用燃料電池スタックは一個50万円くらいします(汗

参考URL:http://mpn.cjn.or.jp/mpn/contents/00002047/index.html

Qトランジスタの静特性 Ic-Vce特性

実験で原因がよくわからない結果が出て悩んでいます。
↓結果
http://hmw3.ee.ous.ac.jp/tran.bmp

Ic-VCE特性を測定したんですが普通ならVceがもっと低い電圧で
鋭く立ち上がると思うんですが、非常に緩やかな立ち上がりになりました。こういった特性のトランジスタが存在するんでしょうか?
それともただの故障してるだけなんでしょうか?
よろしくお願い致します

Aベストアンサー

>Vceがもっと低い電圧で鋭く立ち上がると思うんですが

電流増幅率の小さいトランジスタの場合、活性領域(Ic が Vce によらず一定となる部分)でのコレクタ電流がもともと小さいので、飽和領域(Ic が Vce に比例して増える部分)の傾斜は当然小さくなります。普通、飽和領域の抵抗(Vce/Ic)は10Ω程度ですが、このトランジスタは100Ωと大きいようです。飽和領域の幅(Vceの幅)が大きいのは、そのトランジスタが増幅できる電流の限界に近づいているからだと思います( ib が大きいほど飽和領域が広くなってくる)。以下に書きましたが、実験のコレクタ電流 Ic の範囲で、電流増幅率が Ic とともに低下しているので、特性の上限に近い部分で動作しているものと思われます。実験で使ったトランジスタの型番が分かれば正常かどうか分かると思いますが、これだけでは何とも判断しかねます。ただ、添付図(http://hmw3.ee.ous.ac.jp/tran.bmp)を見たろ、気づいた点が2つあります。

(1) Vce<1V の領域で特性が重なっている
Vc が小さい領域では電流増幅率が下がってくるので、Ic-Vce特性は原点(Ic = 0、Vce = 0) を通る直線状になりますが、緩やかに下がるので特性が重なることはないはずです。重なるというのは ib を増やしても Ic が増えない → 電流増幅率がゼロ?

(2) Vce = 10V のとき、ib を増やすほど電流増幅率が低下している
     ib = 200uA のとき Ic = 10mA → Ic/ib = 50
     ib = 400uA のとき Ic = 15mA → Ic/ib = 38
     ib = 600uA のとき Ic = 17mA → Ic/ib = 28
2SC1815などの小信号用トランジスタは、Vce が10Vと高ければ、広範囲の Ic にわたって電流増幅率が一定です。資料 [1] にある 2SC1815 の hfe-Ic 特性のように、Ic = 0.1mA~100mA まで hfe はほぼ一定です。ただ、高耐圧トランジスタは、Ic の増加と共に hfe が下がる傾向があります。資料 [2] にある 2SC3138 の hfe-Ic 特性は Ic が 15mA を超えると hfe が急減します。これは同ページの上にある Ic-Vce特性からも分かるように、上側ほど特性がつまってきています( ib を増やしてもそれに比例して Ic が増えない)。実験で使ったトランジスタがどういうものか分かりませんが、高耐圧用(Vcboが150V以上)ならばそういう傾向があるかもしれません。

[1] 2SC1815データシート(2ページ hfe-Ic特性) http://www.semicon.toshiba.co.jp/docs/datasheet/ja/Transistor/2SC1815_ja_datasheet_071101.pdf
[2] 2SC3138データシート(3ページ hfe-Ic特性) http://www.semicon.toshiba.co.jp/docs/datasheet/ja/Transistor/2SC3138_ja_datasheet_071101.pdf

>Vceがもっと低い電圧で鋭く立ち上がると思うんですが

電流増幅率の小さいトランジスタの場合、活性領域(Ic が Vce によらず一定となる部分)でのコレクタ電流がもともと小さいので、飽和領域(Ic が Vce に比例して増える部分)の傾斜は当然小さくなります。普通、飽和領域の抵抗(Vce/Ic)は10Ω程度ですが、このトランジスタは100Ωと大きいようです。飽和領域の幅(Vceの幅)が大きいのは、そのトランジスタが増幅できる電流の限界に近づいているからだと思います( ib が大きいほど飽和領域が広くなってく...続きを読む


人気Q&Aランキング

おすすめ情報