《問題》 底面が一辺a cmの正方形で,高さがh cmの正四角柱がある。この正四角柱の底面の一辺の長さを2倍にし,高さを半分にした正四角柱の体積は,もとの正四角柱の体積の何倍になりますか。

《答え》 2倍


どうしてこの答えになるのかがわかりません。 わかりやすく教えて下さい。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

四角柱の体積の求め方…底面×高さです。



底面は正方形なので、もとの四角柱はa×a×h

新しい四角柱は一辺が2倍で高さが半分なので

 2a×2a×h/2

これを計算して比べてみて下さい。
    • good
    • 0

床面だけ考える=縦横が倍 = 4倍


高さだけ 〃  = 半分

=aの時の4倍/ソレを半分=2倍

絵に描いて考えてみ?
    • good
    • 0
この回答へのお礼

教えて下さりありがとうございます。助かりました。

お礼日時:2011/04/17 22:46

 


元の四角柱の体積
a×a×h
問題の四角柱の体積
2a×2a×h/2
=2×a×2×a×h÷2
=2×2÷2×a×a×h
=2×a×a×h

答え2倍
 
    • good
    • 0

もとの四角柱の体積a^2hcm3


底面の長さを2倍ということは底面積(2a)^2=4a^2cm2
高さが半分なので体積は4a^2×(h/2)=2a^2hcm3
なので2倍になります
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


人気Q&Aランキング