(整列可能定理)
Aを任意の集合とするとき、Aに適当な順序≦を定義して、(A,≦)を整列集合とすることができる。

(順序)
1.Aのすべての元aに対してaOa
2.Aの元a,bに対し
  aOb, bOa, ⇒ a=b
3.Aの元a,b,cに対し
  aOb, bOc, ⇒ aOc

の3つを満たすとき、OをAにおける順序という。

と、松阪先生の集合・位相入門に記載されています。
整列可能定理についてWebで検索しているときに、「開区間(0,1)のような連続体濃度card(R)を持つ集合については具体的な順序のイメージを得るのは不可能」のような事が随所に書かれていました。
その話を友人としていたところ、

 「開区間(0,1)について、1/2からの距離の大小について順序を決めれば全順序となり整列集合になるんじゃないの?」

と言われました。
これだと、例えば相違なる2元0.25と0.75は同じとなりますが、上の順序の定義に立ち返ってみてもこれは問題なく、開区間(0,1)のすべての元が見事整列しているように思えます。

すると、Webで見た「具体的な順序のイメージを得るのは不可能」という意見と整合性がとれず悩んでしまいました。
なにかこの順序の入れ方に間違いがありますでしょうか?
ご指摘いただけますようお願い致します。

A 回答 (1件)

整列集合と順序集合を混同していませんか。



整列集合には、任意の部分集合に必ず最小元があります。

1/2からの距離の大小を順序と定めたとき、このことが言えますか?
    • good
    • 0
この回答へのお礼

なるほど!
ありがとうございます!
整列集合は「任意の部分集合に必ず最小元がある」ということを見落としていました。
確かに、部分集合として例えば(0.2,0.4)を取ると最小限が存在しませんね。

よくわかりました!
ありがとうございました!

お礼日時:2011/04/22 08:59

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q実数の整列化について

 大学で数学を学んでいる者です。最近、集合と位相の科目で、整列可能定理を学びました。それは、選択公理・Zornの補題と同値な命題であって、その内容は
「任意の集合において、適当な順序関係を定義すれば、整列集合にすることができる。(整列集合とは、空でない部分集合が常に最小元を持つ集合)」
という内容でした。
 さて、実数の集合は通常の順序関係では整列集合ではありません(例えば開区間は最小数を持ちません)。定理によれば、適当な順序によって実数の集合も整列集合になる訳です。
 それなら、それは具体的にはどのような順序なのかと調べて見たんですけど、どうも見つかりません。どなたか知っている人がいれば教えてください。

Aベストアンサー

連続濃度以上の集合に整列順序が存在することは、選択公理なしには証明できません(というより同値ですよね)。証明は抽象的構成を与えることですから、ある意味ではそれは不可能なわけです。といってしまうと身もふたもないですから、整列順序がどういうものかを納得するためにも雑な例をあげてみます。

整列順序というのは、ようするに最も小さい数があって、さらに各元に対して“次の数”が定まっているような順序です。たとえば自然数列{1,2,3,…}が典型です。実数に整列順序を入れてやりたければ、まず最小元を決めて、また各元に対して次の数を決めてやればいいのです。(しかしながら非可算個の元に対して次の元を指定するなんてことは人間には無理です(本当は可算無限個でも無理なんですけどね))

たとえば、{1,2,…,…,π,e,√2,√3,…,…,0,-1,-2,…}などという順序を考えてみましょう(左の方が小さいとする順序)。次の数さえ決まっていたらいいんです。だから上の順序は整列順序です。5の次は6だし、1兆3の次は1兆4です。πの次はeだし、eの次は√2です。0とか、πの一つ前の数字が気になったりしますが、整列順序というのはあくまでも一つ大きい数さえ決まっていたらいいんです。π^eがどこにあるかわかりませんが、それも適当に決めてやればいいのです。ようするに実数を思いついた順番にひたすら並べていけばいいのです(無限回!しかも非可算無限回!)それが整列順序というものです。

数学的帰納法ってあまり信頼がないですが、あれは自然数を一斉に順番に並べることができること(ペアノの公理)から由来する定理であって、整列可能定理というのはその非可算無限集合に拡張された超限帰納法に対応するものです。非可算無限個の元を順番に並べるという、とても有限の時間で人ができるわけがないことを考えているわけです。選択公理というのは、非空な集合の非可算無限直積から元が取れる、つまり非可算無限個の元をまったく同時に扱える、ということを主張する公理なので、そりゃあそんなこと認めてしまえば、整列順序なんて作れるよね、とそんな気がしてきませんか?(すべての実数に対してその次の数を考えてやるだけで整列順序ができるわけだから!)

ちなみに正65537角形の作図法なら知られています。(MathWorldから引用)De Temple (1991) notes that a geometric construction can be done using 1332 or fewer Carlyle circles. >ANo.1様

連続濃度以上の集合に整列順序が存在することは、選択公理なしには証明できません(というより同値ですよね)。証明は抽象的構成を与えることですから、ある意味ではそれは不可能なわけです。といってしまうと身もふたもないですから、整列順序がどういうものかを納得するためにも雑な例をあげてみます。

整列順序というのは、ようするに最も小さい数があって、さらに各元に対して“次の数”が定まっているような順序です。たとえば自然数列{1,2,3,…}が典型です。実数に整列順序を入れてやりたければ、まず最小元...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報