次の問題が解けないので、教えて下さい。

f(x)=|x^2+x-2| とする。
(1) 関数 y = f(x) の極値を求めよ。
(2) 曲線 y = f(x) と x軸で囲まれる部分の面積を求めよ。

A 回答 (2件)

y=f(x)=|(x+2)(x-1)|


=|(5/4)-{x+(1/2)}^2|
と変形できるからグラフは図のようになる。
(1)
x=-2とx=1で極小値f(-2)=0,f(1)=0
x=-1/2で極大値f(-1/2)=5/4

(2)
図から
∫[-2,1] f(x)dx=∫[-2,1] (2-x-x^2)dx
この積分ならできると思いますのでやってみて下さい。
答えが
=9/2
となれば正解です。
「絶対値のついた関数」の回答画像2
    • good
    • 0
この回答へのお礼

わざわざグラフまで貼ってくださって、ありがとうございました。
でも(1)の極大値が間違っているようで、ヒントをもとに自分で計算したら9/4になりました。

お礼日時:2011/04/24 16:02

まずはy=x^2+x-2について考えましょう。


x^2+x-2=0とおくと(x+2)(x-1)=0 なので、この二次方程式の解はx=-2,1です。
ということは、-2<x<1の区間でx^2+x-2は負の値をとるということです。従ってこの区間では
f(x)=-x^2-x+2
ということです。また、x<=-2、1<=xの区間では
f(x)=x^2+x-2
となります。あとはグラフを書いて考えてみて下さい。y=x^2+x-2のうち、x軸よりも下にある部分をx軸に関して反対側(つまり正の側)に折り返した形になります。
    • good
    • 0
この回答へのお礼

アドバイスをありがとうございました。

お礼日時:2011/04/24 15:56

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q面積の求め方に関して

面積の求め方に関して質問です。


正方形の面積の求め方は底辺×高さで求めます。

底辺=25、高さが25の場合は

25×25=625になります。



円周の長さから面積を求める場合は

長さ÷3.14÷2=答え÷2の答え×答え×3.14

長さ100とした場合

100÷3.14÷2=15.9235・・・・

四捨五入して15.92として

15.92×15.92×3.14=795.82

四角形も直線にした場合は長さが100となりますよね?

なぜ面積の答えが違うんでしょうか?

小学生にもわかる回答で教えていただければ幸いです。

※そもそも円周の長さから面積の求め方が間違っているんでしょうか??

Aベストアンサー

円周--周囲の長さと面積は、図形の形が異なれば無関係です。

たとえば、周囲の長さが同じでも、正方形よりは長方形のほうが面積が小さいですね。

円を20等分して並べ替えてみると図のようになります。

 このように、同じ周長なら円がもっとも面積が大きい。言い換えれば同じ面積なら丸が一番周長は短い。だから、バーゲンで袋にいっぱいつめれば丸くなっちゃう。水に浮かんだ油の粒が丸くなる。水と油の境界線をもっとも短くしようとするから円になるのです。

 体積も同じで、宙に浮かぶ水滴が球になるのは、表面張力で表面を小さくしようとすると、球になってしまう。同じ体積なら球がもっとも表面積が小さい。

Qexp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

フィボナッチ数列F[n]は、
F[1]=1,F[2]=1,F[n+2]=F[n+1]+F[n]
で定義され、リュカ数列L[n]は、
L[1]=1,L[2]=3,L[n+2]=L[n+1]+L[n]
で定義されます。このとき、

exp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

が成り立つそうなのですが、どうしてなのですか?

右辺は、フィボナッチ数列の母関数と似ていてなんとか求められるのですが、左辺をどうして求めていいかわかりません。

なお、式は
http://mathworld.wolfram.com/FibonacciNumber.html
の(68)を参照しました。

Aベストアンサー

↓ここに証明がありますね。
http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf
(2.7 A surprising sum を見てください。)

参考URL:http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf

Q図形の面積の求め方(定積分の応用)

図形の面積の求め方を教えてください。

円 x^2+y^2=2 と 放物線 y=-x^2 で囲まれた図形のうち上側の部分の面積の求め方

Aベストアンサー

ヒント)

上側の部分の面積S1,下側の部分の面積S2とすると
円の面積S=S1+S2=πr^2=2π
S1=S-S2=2π-S2

S2は
円と放物線の交点(-1,-1),(1,-1)から
S2=∫[-1,1] -x^2-{-√(2-x^2)}dx
=2∫[0,1] [{√(2-x^2)}-x^2]dx
 =2∫[0,1] {√(2-x^2)}dx -2∫[0,1] x^2dx
から計算できますね。

Q∫∫【D】2x|y|dxdy, D={x^2+y^2≦1,x^2+y^2≦2x}

∫∫【D】2x|y|dxdy, D={x^2+y^2≦1,x^2+y^2≦2x}
という重積分について質問です。∫∫【D】2x|y|dxdyと∫∫【D】2xydxdyってどう違いますか?

この場合では、領域がx軸に関して対称だから、前者の場合も後者の場合もたまたま答えが同じになるけれど、理屈としては、y座標が負になっている部分をx軸に関して折り曲げた結果として、図形がx軸に関して対称だったために、y座標が正の部分を2倍することになったと考えればよいのでしょうか?
言葉が下手で、伝わりにくい文章ですみません。

Aベストアンサー

>この場合では、領域がx軸に関して対称だから、前者の場合も後者の場合もたまたま答えが同じになるけれど

本当にそうなります?
2xyはyについて奇関数、2x|y|はyについて偶関数です。
前者をx軸について対称な領域で積分すると"0"に、後者を同じ領域で積分するとx軸よりも上側の領域での積分の2倍になります。

Q外壁面積・屋根面積の求め方

延べ床面積からの外壁面積と屋根面積の求め方を教えてください。

Aベストアンサー

こんにちわ

屋根と外壁の塗装リフォームですか?^^

#1のご経験者さんが語ってくださってる通り、結構大変です。

継ぎ足しでもう少しポイントをいいますと…

屋根について=床面積が同じでも、屋根の勾配が強かったり弱かったりで、
屋根の面積、瓦の数はドーん!と変化してしまいます。
学校で習った「直角三角形の斜辺」を考えてみてください^^
さらにお屋根の場合、「軒の出」がおまけとして必ずついていますので、これを足してあげないとこれまた何割か誤算が生じてしまいます。
ふだんは「こんなもん、屋根のうちに入らない」と思っているような小さな「軒の出」や、「霧よけ」と言われるプチ屋根もどきがあちこちにありますので気をつけてチェックしてみてください。
もらった図面がお手元にあるようでしたら、これらはまず、「間取り図」ではなくて
「立面図」を見て屋根の勾配にあわせて軒の出まで含めてモノサシを当ててみると素人でもわかりやすいですので試してみてください。
それに隠れた「プチ軒」になる部分がどれぐらいあるか、お家の回りをぐるっと外から見てチェックしてみてください。
(結構、設計屋さんからもらっている図面と、実際建っている自分の家とが細かい所で違ってる!なんてことがよくありますので)
さっきの「立面図」で勾配の具合をチェックしたら、こんどは「屋根伏せ図」で平面的なサイズを見ます。「屋根伏せ図」という図面は省略されてしまっているかも知れませんが、「二階平面図」を見るとかならず一階の軒にあたる屋根が描かれていますのでチェックしてみてください。
二階の屋根伏せは完全に省略されてるかもしれませんので、それは「二階平面図」の大きさプラス「軒の出」で直角三角形の底面を求めて、これに最初に「立面図」でたしかめた「屋根勾配」で直角三角形の斜面の大きさを出せばよいことになります。


外壁の面積は、ペンキ塗り替え工事の場合でしたら、窓ガラスの分を引き算するのを忘れずに!
(南側などはかなり引き算の面積が大きくなりますので)

うまくいくといいですね!

こんにちわ

屋根と外壁の塗装リフォームですか?^^

#1のご経験者さんが語ってくださってる通り、結構大変です。

継ぎ足しでもう少しポイントをいいますと…

屋根について=床面積が同じでも、屋根の勾配が強かったり弱かったりで、
屋根の面積、瓦の数はドーん!と変化してしまいます。
学校で習った「直角三角形の斜辺」を考えてみてください^^
さらにお屋根の場合、「軒の出」がおまけとして必ずついていますので、これを足してあげないとこれまた何割か誤算が生じてしまいます。
ふだんは「こ...続きを読む

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Q小学6年生で三角形の面積求め方わかりません

小学6年生の親です。
学校のテストでわからなかった三角形の面積求め方わかりません。
私も色々考えたのですが底辺7cmの隣の点線部分の求め方がわからないのです。
アドバイスお願いします

Aベストアンサー

小学生で習う三角形の面積の求め方は、(底辺×高さ)/2です。
この時でいう高さは、三角形の中に書かれていたり外に書かれていたりしても底辺に対して直角のものとして定義しています。
ですから今回は実線部の三角形の外に飛び出て書かれているものが高さになります。

要するにこの実線部の三角形の底辺は7cm、高さは8cmですので、実線部の三角形の面積の(7×8)/2で28。
答え、28cm2になります。

ちなみに点線部の長さを求めるには今回の場合、何かしらの角度が必要なので求めることができません。

Q【問題】f(x)=x^4+2x^3+10x^2+(10-2√2)x+2

【問題】f(x)=x^4+2x^3+10x^2+(10-2√2)x+23とする。実数αに対して, f(x)をx^2+αで割ったときのあまりを求めよ。このことを用いてf(x)を実数の範囲で因数分解せよ。

あまりを(10-2√2-2α)x-α(10-α)+23と求めたのですが…
ここからこれをどうすればいいのかわかりません^^;
あまりを0とおくのかと試みたのですが…

どなたか教えてください。
よろしくお願いします!

Aベストアンサー

>あまりを(10-2√2-2α)x-α(10-α)+23と求めたのですが…
>ここからこれをどうすればいいのかわかりません^^;
>あまりを0とおくのかと試みたのですが…
そのやり方で良いですよ。
xの係数=0とおいて、αを求めて下さい。
そのαを定数項に代入すると定数項もゼロになります。

そうすると、そのαに対して、
f(x)は(x^2+α)で割れますので、商をQ(x)の式にαを代入すれば
f(x)=Q(x)(x^2+α)
の形に因数分解できたことになります。
Q(x)は2次式ですから、2次方程式の判別式Dで調べると分かると思いますが
D<0になるので実数の範囲では因数分解できないでしょう。

Q扇形の面積の求め方

中学を卒業して早二十年近く経ちました。
いまだに印象深い公式のひとつに「扇形の面積の求め方」があります。
というのも、扇形の面積を求める公式に関してオリジナル式を発案(というほど大したアイディアではないですけど)し、それをテストで使用してバツを喰らったからです。
先生に抗議にいったものの「オリジナルは不可」と一蹴されてしまいました。

そんなわけで、いまだに自作の式だけは覚えています。
ところが、最近本屋で立ち読みすると「扇形の面積の求め方」の式が昔と違っていました。
ちらっと立ち読みしただけなので、見違えたのかもしれません。

長くなりましたが質問です。
扇形の面積の求め方は

弧の長さ×半径×2

であっていますか。これは今でも使われているのでしょうか。

Aベストアンサー

「弧の長さ×半径÷2」です。平行四辺形に変形して解くやり方ですね。
http://www.manabinoba.com/index.cfm/4,6147,73,html
三角形として考える考え方もあるようです。
http://web2.incl.ne.jp/yaoki/k15.htm

中心角が分かっていれば、半径^2×3.14×(中心角/360°)です。どちらも使われていますね。

参考URL:http://www.manabinoba.com/index.cfm/4,6147,73,html,http://web2.incl.ne.jp/yaoki/k15.htm

Qf(x)=x^4+2x^3-5x^2-2x+5のときf(√3ー1)は□

f(x)=x^4+2x^3-5x^2-2x+5のときf(√3ー1)は□となる。

次数下げ そのまま計算するのは面倒で芸がなさすぎる。√3ー1をαとおいて、αの満たす2次の等式を利用して「根号を解消して次数下げ」が定石である。

教えてほしいところ
√3ー1をxと置いて、xの満たす2次の等式を利用して次数下げしてもいいんですか??
また、何故xではなくαと置いているんでしょうか??

教えて下さい

Aベストアンサー

こんにちわ。

√3-1= αとおいた方が、逆にわかりやすくなると思います。
いま、欲しい(答えを得たい)値は、f(√3-1)= f(α)です。
そして、
・f(α)= α^4+ 2α^3- 5α^2- 2α+ 5であり、
・αは、(αの 2次式)= 0という関係を満たしている。

となります。
(αの 2次式)= 0より α^2=・・・の形に変形すれば、
「α^2という値(=(√3-1)^2)は、αの 1次式(上式の左辺)の値に等しい」
ということですから、代入すなわち次数下げをしてもいいことになります。

「x」だと「変数」という意味合いが強いので、
√3-1という「定数」であることを明示的にするためにもαと表した方がわかりよいと思います。


人気Q&Aランキング