初めての店舗開業を成功させよう>>

レギュレータからデバイスに電源を供給する回路において、
任意の時間以内に供給する電源を立上げる/立下げたい場合、
レギュレータ出力端子に配置する部品の定数を
計算から求める場合にはどのように考えれば良いのでしょうか?

例えば、レギュレータ出力に100uF、0.1uFのバイパスコンデンサと
1KΩのプルダウン抵抗を接続した場合に電源(3.3V)の立上がり/立下がり時間は
どのように見積もればよいのでしょうか?
(デバイス側の容量成分は数pF程度)
単にCxRで求まるという訳ではないと思っていますが。。。

ご回答お待ちしております。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

どれくらいの時間オーダでの立上がりが必要なのでしょうか。

比較的短時間(0.1秒以下)であれば以下で計算できます。
出力側のコンデンサに電荷がない状態で三端子レギュレータに電源投入すると、規定の電圧に達するまで、コンデンサは定電流充電されます。その電流は三端子レギュレータの最大出力電流 Imax です(これは入出力電圧差と接合温度で変わります)。 出力側のコンデンサ C (F) と並列に抵抗R(Ω)がついているときの出力電圧 Vout (V)は、Imax が一定と仮定すれば
   Vout = Imax*R*{ 1 - exp(-t/C/R) }
という変化になります。これが三端子レギュレータの規定の電圧 V0 (V) に達するまでの時間(立ち上り時間) Tr (s) は
   Tr = C*R*ln{ Imax*R/( Imax*R - V0 ) }
で表わされます。この場合、R > V0/Imax としないと出力電圧は永久にV0に達しません。V0 = 3.3V、R = 1kΩ、C = 100μF のとき、Imax = 0.1A で Tr = 3.3ms、Imax = 1A で Tr = 0.33ms になります。

一方、三端子レギュレータの入力を遮断したときの出力電圧の変化は、三端子レギュレータの出力側から内部を見た抵抗(これも出力電圧で変わりますが)を Rout(Ω)とすれば、V0 で充電された C の電荷が、R と Rout の並列抵抗で放電されるときの電圧変化になるので
   Vout = V0*exp( -t/C/r )
という立下り特性になります。r = R*Rout/( R + Rout ) です。
V0 が完全に0になるには無限の時間がかかりますが、V0 の10%まで落ちた時間を立下り時間 Tf (s) と決めると
   Tf = ln(10)*C*r = 2.3*C*r
となります。 Rout = ∞、R = 1kΩ、C = 100μF のとき Tf = 0.23s になります。

立ち上り時間を長くしたい場合、Cを極端に大きくしなければなりませんが、そうすると、三端子レギュレータの熱保護回路が働いてしまう可能性があるので、上述のような方法でなく、三端子レギュレータの電圧制御端子の電圧を徐々に上げたり下げたりする方法が良いと思います。ただし、この方法では、三端子レギュレータの最低出力電圧(出力電圧固定型はV0、可変型は1.25V)未満には出力電圧を絞れません。、別に負電圧電源を用意すれば、出力電圧を0に絞ることはできますが回路が複雑になります。

三端子レギュレータの最大出力電流はここ(http://www2.renesas.com/maps_download/pdf/G12702 …)の25ページの図6-4に一例が
出ています。電圧制御端子で出力電圧を徐々に上げる方法は、同じ資料の16ページ(8. スロー・スタートアップ回路)に出ています。
    • good
    • 0
この回答へのお礼

ありがとうございます。

まず、Vout = Imax*R*{ 1 - exp(-t/C/R) }
にたどり着けませんでした。。。

もう少し頭の中を整理してから再度質問させていただきます。

お礼日時:2011/06/13 00:23

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qプルアップ抵抗値の決め方について

ほとんどこの分野に触れたことがないので大変初歩的な質問になると思います。

図1のような回路でプルアップ抵抗の値を決めたいと思っています。
B点での電圧を4.1Vとしたい場合について考えています。その場合、AB間での電圧降下は0.9Vとなります。

抵抗値×電流=0.9Vとなるようにプルアップ抵抗の値を決めるべきだと考えていますが、この抵抗に流れる電流が分からないため、決めるのは不可能ではないでしょうか?

抵抗値を決めてからやっと、V=IRより流れる電流が決まるため、それから再度流れる電流と抵抗を調節していって電圧降下が0.9Vとなるように設定するのでしょうか。どうぞご助力お願いします。



以下、理解の補足です。
・理解その1
ふつう、こういう場合は抵抗値を計算するためには、電圧降下と抵抗に流れる電流が決まっていることが前提だと考えていました。V=IRを計算するためには、この変数のうち2つを知っていなければならないからです。
また、例えば5V/2Aの電源を使った場合、マイコン周りは電源ラインからの分岐が多いため、この抵抗に2A全てが流るわけではないことも理解しています。

電源ラインからは「使う電流」だけ引っ張るイメージだと理解しているのですが、その「使う電流」が分からないため抵抗値を決定できません。(ポート入力電流の最大定格はありますが…)


・理解その2
理解その1で書いたように、抵抗値を計算するためには、電圧降下と抵抗に流れる電流が必要だと理解しています。図2を例に説明します。Rの値を決めたいとします。
CD間の電圧降下が5Vであることと、回路全体を流れる電流が2Aであることから、キルヒホッフの法則より簡単にRの値とそれぞれの抵抗に流れる電流が分かります。今回の例もこれと同じように考えられないのでしょうか。

ほとんどこの分野に触れたことがないので大変初歩的な質問になると思います。

図1のような回路でプルアップ抵抗の値を決めたいと思っています。
B点での電圧を4.1Vとしたい場合について考えています。その場合、AB間での電圧降下は0.9Vとなります。

抵抗値×電流=0.9Vとなるようにプルアップ抵抗の値を決めるべきだと考えていますが、この抵抗に流れる電流が分からないため、決めるのは不可能ではないでしょうか?

抵抗値を決めてからやっと、V=IRより流れる電流が決まるため、それから再度流れる電流と抵抗を調...続きを読む

Aベストアンサー

NO1です。

スイッチがONした時に抵抗に流れる電流というのは、最大入力電流や最大入力電圧
という仕様から読めば良いのでしょうか。
→おそらくマイコンの入力端子の電流はほとんど0なので気にしなくてよいと思われます。
入力電圧は5Vかけても問題ないかは確認必要です。

マイコンの入力電圧として0Vか5Vを入れたいのであれば、抵抗値は、NO3の方が
言われているとおり、ノイズに強くしたいかどうかで決めれば良いです。
あとは、スイッチがONした時の抵抗の許容電力を気にすれば良いです。
例えば、抵抗を10KΩとした場合、抵抗に流れる電流は5V/10kΩ=0.5mAで
抵抗で消費する電力は5V×0.5mA=0.0025Wです。
1/16Wの抵抗を使っても全く余裕があり問題ありません。
しかし、100Ωとかにしてしまうと、1/2Wなどもっと許容電力の大きい抵抗を
使用しなければいけません。
まあ大抵、NO3の方が書かれている範囲の中間の、10kΩ程度付けておけば
問題にはならないのでは?

Qコンデンサの放電時間の算出方法をお教え下さい。

十分に充電された300V、100μFの電解コンデンサの両足を
10kΩの抵抗でショートした場合、コンデンサに蓄えられた
電荷が全て放出されるまでに掛かる時間の求め方を
教えて頂けますでしょうか。

宜しくお願い致します。

Aベストアンサー

いつまで経っても電荷が全て放出されることはありません。
放電が進むと電圧が下がって流れる電流は少なくなります。
T秒で半分の電圧になるとすると、次のT秒で半分、次のT秒で半分・・・となって無限の時間が掛かります。

Qパターン幅と許容電流に関して質問があります。

ネットで調べたのですが理解できず質問させていただきます。

ネットで検索をすると、
一般的にパターン幅1m(銅箔厚35u)で1Aを目安とあります。

また、それとは別に
・破壊電流:パターン幅1mmで許容電流10A
・導体温度45℃上昇:パターン幅1mmで許容電流4A
などあります。

これは、
・パターン幅1mmに対して一瞬でも10Aを超えたらパターンが断線する。
・パターン幅1mmに対して4Aを流し続けた場合、外気温に対してパターンが45℃上昇する。
(外気温25℃であれば、パターンは、70℃になっている。)
という理解で良いのでしょうか?

つまりは、基板の温度が70℃でもOKということであれば、
パターン幅1mmで4Aを流しても良いということでしょうか?
それとも70℃に達する時間があり4Aを流し続けたら70℃を超え断線にいたるのでしょうか?

壊電流の10Aと導体温度45℃上昇の4Aの間は、どうなるのでしょうか?

質問が多くなり申し訳ございません。
分かる方がいたら回答お願いいたします。

Aベストアンサー

こんにちは
#1の回答と重複すると思いますm(__;m

(1)>一般的にパターン幅1m(銅箔厚35u)で1Aを目安とあります。
>また、それとは別に
(2)>・破壊電流:パターン幅1mmで許容電流10A
(3)>・導体温度45℃上昇:パターン幅1mmで許容電流4A

 (1)は、回路設計者がパターン設計者に指示すべき仕様になります。
 つまりパターン設計者は回路がどのくらいの電流を使用しているかいちいち回路解析はしないので35ミクロン有る銅箔で1mm幅の回路でつないでねと指示する必要があるということです。
 (2)は、回路設計者が間違っても(不測の事態が起こっても)パターン幅1mmを指定した回路に10Aの電流が流れるような設計をしてはいけないと禁じています。
 (3)回路設計者に4Aを流すと45℃も温度が上がるが回路動作に問題ないですか?と温度補償などの注意を促しています。

>これは、
>・パターン幅1mmに対して一瞬でも10Aを超えたらパターンが断線する。
>・パターン幅1mmに対して4Aを流し続けた場合、外気温に対してパターンが45℃上昇する。
>(外気温25℃であれば、パターンは、70℃になっている。)
>という理解で良いのでしょうか?
 その通りです。

>つまりは、基板の温度が70℃でもOKということであれば、
>パターン幅1mmで4Aを流しても良いということでしょうか?
 その通りです。
 但し、銅箔を基板に貼り付けている樹脂にはダメージが起こります。
 半田付けをしなくてはいけないので、230℃3秒間は持たす材料を使っていますが永遠にその温度を維持されると樹脂や端子に経時変化は当然起こりまよ(^^;

>それとも70℃に達する時間があり4Aを流し続けたら70℃を超え断線にいたるのでしょうか?
 断線はしませんが、その温度が持続して回路の動作に異常をきたしたりや使用しているパーツに異常は起こりませんか?(あるいは起こっても知らないよ)ということです(^^;

>壊電流の10Aと導体温度45℃上昇の4Aの間は、どうなるのでしょうか?
 どうなるか?、やった場合の結果は質問者さんの責任です(-。-;
 どうしても必要なら安全を確保して実験して確かめるべきです(^^;

こんにちは
#1の回答と重複すると思いますm(__;m

(1)>一般的にパターン幅1m(銅箔厚35u)で1Aを目安とあります。
>また、それとは別に
(2)>・破壊電流:パターン幅1mmで許容電流10A
(3)>・導体温度45℃上昇:パターン幅1mmで許容電流4A

 (1)は、回路設計者がパターン設計者に指示すべき仕様になります。
 つまりパターン設計者は回路がどのくらいの電流を使用しているかいちいち回路解析はしないので35ミクロン有る銅箔で1mm幅の回路でつないでねと指示する必要があるということです。
 (2)は、回路設計者が間...続きを読む

QIC未使用端子処理のプルダウン/プルアップ抵抗

2点質問させて頂きます。

1点目
ICの未使用端子処理は、抵抗を介してプルダウンまたはプルアップ抵抗を接続して下さいという記述を多々見ます。普段、10kΩを繋いでいるのですが疑問があります。

この抵抗はどれだけ小さくても、またどれだけ大きくても良いのでしょうか。理由も併せて教えて頂けないでしょうか。抵抗が必要な理由も理解できません。

2点目
常にHレベル入力 / 常にLレベル入力の端子は抵抗を介さずに電源ライン / GNDに繋いでも良いのではないでしょうか。そのような回路は見たことがないので問題があるためだと思いますが、何故なのでしょうか…。

以上、よろしくお願い致します。

Aベストアンサー

こんにちは。

ごもっともな疑問と思います。私も悩んだことがあります。
2点まとめて回答してみましょう。
ポイントは、「基本的には、おっしゃるとおり、電源/GNDに直付けでよい。まあ、わずかながらの”消費電流”を考えると・・・」

 まず、プルアップ/ダウンの必要性はご理解のようですね。入力端子については、周囲の雑音(電磁波)により電圧が変動すると中にある(増幅または増幅同等の機能のある)回路が動作してしまい、それにより回路内部にさらなる雑音を発生させたり消費電流が大きくなったりするので、これを止めたいというもの。

 これを止めるためには入力端子の電圧を確定させればよいので、電源やGNDに直付けでも良いだろうというご意見はそのとおりで、質問者さんはご経験になっていないようですが、私は実用回路でもしばしば目にしています。(特にGNDに直付け。)

 さて、他方、抵抗を介してのプルアップ/ダウンも多いですね。これは、主に「消費電流」に関する次のような考え方によります。
・ICなどの入力端子が流れ出し型なのか流れ込み型なのかわからない
 話の単純化のためにバイポーラトランジスタ(FETではない旧来型トランジスタ)を前提にしてお話しましょう。
トランジスタにはPNP型とNPN型があり、いずれも入力端子は「ベース」と呼ばれますが、PNP型はベースから電流が流れ出そうとしており、大きく流れ出させる(Lo。GNDにつなぐ)とオンになります。
この際、入力端子回路そのもので電流(電力)を食うほか、内部の(少なくとも初段の)トランジスタも大きな電流を消費します。
NPN型では流れ込み型なので、入力電流を大きく流れ込ませる(Hi。電源ラインにつなぐ)と消費電流が大きくなります。
 このため、プルアップ/ダウンはPNPならアップ、NPNならダウンにしたいところですが、ICごとにいちいち内部回路(等価回路)を確認するのは大変。
 そこで、適当に抵抗をつないで妥協を図る・・・というのはご理解いただけるでしょう。
(消費電力を極限まで低下させる場合で量産品として社会的影響が大きい場合などはIC内部の等価回路まで確認してアップ/ダウンを決めます)

・抵抗値の適正な値は?
 さて、基本的には短絡(0オーム)でも良いので、抵抗値問題としては「どのくらい大きくできるか」・・・になりますね。
 抵抗を入れるのが妥協策である以上、最終的には消費電流と耐ノイズ性の妥協点であり、経験という面になってきますが、関係するのは「入力インピーダンス」になります。
「入力インピーダンス」は見かけ上の入力端子(とGND間)の抵抗で、通常はこれが極めて大きい故に端子電圧が「あばれる」ことになりますので、外付け抵抗はこれより十分に小さい必要があります。
 これも、結局はICごとに異なるので、最適な値というのは内部等価回路を知って決めることになりますが、もともと大した問題ではないので、経験的に多くのICが100kオーム~1Mオームのインピーダンスを持つことを前提に、それより十分小さい値として1k~10kオーム程度を選ぶ・・・というところでしょう。
 さらに、余談ですが、私は、自分で作った回路(装置)に後日、臨時のテストや修正、改造を加えることが多く、その際には配線が小さすぎてプルアップ抵抗を切り離すのに苦労することがあるので、大き目の10k~50kオームを選んでおきます。すると、プルアップ(hi)に固定したものを臨時にLo(GNDに短絡)したり、プルアップを放置したまま前段に別の回路を接続するといった無茶なことも可能です。(事前に短絡してあると変更の際は必ず切らなければならない)

 さてさて、いかがでしょうか。
私が見落としている理由もあるかもしれませんが、お役に立てば幸いです。

こんにちは。

ごもっともな疑問と思います。私も悩んだことがあります。
2点まとめて回答してみましょう。
ポイントは、「基本的には、おっしゃるとおり、電源/GNDに直付けでよい。まあ、わずかながらの”消費電流”を考えると・・・」

 まず、プルアップ/ダウンの必要性はご理解のようですね。入力端子については、周囲の雑音(電磁波)により電圧が変動すると中にある(増幅または増幅同等の機能のある)回路が動作してしまい、それにより回路内部にさらなる雑音を発生させたり消費電流が大きくなったりするの...続きを読む


人気Q&Aランキング

おすすめ情報