『ボヘミアン・ラプソディ』はなぜ人々を魅了したのか >>

不確定性関係ΔxΔp=h/4πのとき
調和振動子のエネルギーEが
E=(Δp^2)/(2m)+(mω^2Δx^2)/2 

で定義されているとき、Eの最小値を計算したいのですが
ラグランジェの未定数法乗を使わずに
計算しようとして不確定性関係からΔpを消去して
E(Δx)=h^2/(32π^2mΔx)+(mω^2Δx^2)/2 
に変形しました。
次にdE/dΔx=0 になるΔx が計算できずに困っています。
そして計算で求まった最小エネルギーの物理的意味
も併せてわかる方がいたら教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

Δpを消去した式は正しくは


E(Δx)= A/Δx^2 + BΔx^2,
ここに
A= h^2/(32π^2, B = mω^2/2
です。

dE/dΔx = -2A/Δx^3+2BΔx = 0
これより
Δx^2 = √A/B
これをE(Δx)の式に代入すると
E(Δx)= 2√AB = hω/4π

この式の意味するところは、調和振動子の持つ最低エネルギは
不確定性原理の条件下ではhω/4πである(ゼロではない)
ということです。

量子力学の調和振動子の計算からはエネルギは
E = hω(n + 1/2)/2π
で与えられます。ここでn = 0 と置いてEを求めると、
E = hω/4π
となります。
http://homepage2.nifty.com/eman/quantum/oscillat …

調和振動子は、量子力学的なゆらぎのために振動を止める事が決してできず、
残ってしまうこの振動は「零点振動」、この時のエネルギは「零点エネルギ」と
呼ばれます。絶対零度でも観測される振動です
    • good
    • 0
この回答へのお礼

ありがとうございました。m(_ _)m
E(Δx)計算が間違っていました
ただ漠然と解こうとしていましたが
不確定性原理のために
最小エネルギーが0にならない事を
理解するための問題だったことがわかりました。

お礼日時:2011/06/17 22:45

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q不確定性関係を使う問題に関して

例えば調和振動子
E = p^2/2m + kx^2/2
の最低エネルギーを不確定性関係で見積もったりする問題で
不確定性関係を用いるため
x→Δx
p→Δp
と書いて解いてますが左辺がEのままでこういう風に置いてもいい理由がよくわかりません。

調和振動子に限らずこういう風にして解く問題が他にもあるんですが(例えば水素原子の最低エネルギーを不確定性関係を使って求める問題など)どういう時にxやpをΔxやΔpと置いても問題ないのでしょうか。

質問の意味が分かりにくかったらすみません。
よろしくお願いします。

Aベストアンサー

まず、固有状態に対しては エネルギー固有値=エネルギー期待値 なので、
H = p^2/2m + kx^2/2
の両辺の期待値をとって、
E = <p^2>/2m + k<x^2>/2
が成り立ちます(左辺は基底状態のエネルギー、右辺の期待値は基底状態に関する期待値)

さらに、
<x^2> = (Δx)^2 + (<x>)^2
という関係があります。
調和振動子は左右対称なので、その基底状態では<x>=0が予想されます。
よって、基底状態において <x^2> = (Δx)^2 が成り立ちます。
pについても同様です。

これを使えば、
E = (Δp)^2/2m + k(Δx)^2/2
となることが分かります。

Q調和振動子

   D:エイチバー
   α:√(mω/D)
   q:αx
1次元調和振動子のn=0の場合の固有関数
 φ0(x)=(mω/πD)^1/4×exp(-q^2/2) 
    =(mω/πD)^1/4×exp(-mωx^2/2D)
を使って
 位置の期待値 <x>=∫x│φ0*│^2 dx
 運動量の期待値 <Px>=∫φ0*(-iDd/dx)φ0 dx
 位置の二乗の期待値 <x^2>=∫x^2│φ0│^2 dx
 運動量の二乗の期待値 <Px^2>=∫φ0*(-iDd/dx)^2φ0 dx
の4つを計算したいのですが、ややこしくて出来ません。
どなたか、計算してみてください。
因みに、答えは『0、0、D/2mω、mωD/2』になる筈です。

Aベストアンサー

vortexcore さんの書かれているように
> ややこしくて出来ません
の具体的内容を書かれた方が回答も書きやすいでしょう.

期待値を求める方法はご存知のようですから,あとは積分だけですね.
<x> と <Px> は本質的に

(1)  ∫{-∞~+∞} t exp(-t^2) dt

の計算ですね(t = q/√2).
これは t^2 = z とおけばすぐに計算ができます.
でも,Umada さんご指摘のように,奇関数の{-∞~+∞}積分ですから,
計算するまでもなく答はゼロです.
調和振動子は右に行ったり左に行ったりの繰り返しで,
対称性を考えれば位置も運動量も正の場合と負の場合が同じ確率で現れますから,
期待値はゼロ,というのが物理的意味です.

<x^2> と <Px^2> の期待値の計算では

(2)  ∫{-∞~+∞} exp(-t^2) dt
(3)  ∫{-∞~+∞} t^2 exp(-t^2) dt

の計算が必要です.
(2)は有名な積分(ガウス積分)で √π であることが知られています.

(2')  ∫{-∞~+∞} exp(-t^2) dt = √π

(2')で,t^2 = az^2 とおきますと

(2'')  ∫{-∞~+∞} exp(-az^2) dz = √(π/a)

となり,(2'')の両辺を a で微分してから a=1 とおけば

(3')  ∫{-∞~+∞} z^2 exp(-z^2) dz = (1/2) √π

が得られます.これで(3)の積分は解決.
あとは係数の調整だけですので,
自分で手を動かしてみてください(これが大事です).

Umada さんの言われるように,x と Px の線形結合を使った演算子を用いると
簡単ですが,たしかに概念的にとっつきにくい気はします.

調和振動子では運動エネルギーの期待値とポテンシャルエネルギーの期待値が
等しいこと,および基底状態のエネルギーが (1/2)Dω であること,
を使ってよいなら,

(4)  <Px^2>/2m = (1/4)Dω  (運動エネルギー期待値)
(5)  (k/2) <x^2> = (1/4)Dω    (ポテンシャルエネルギー期待値)

です.k はばね定数で,ω^2 = k/m.
(4)=(5) で,(4)+(5) が(1/2)Dωになっています.
これから簡単に <Px^2> と <x^2> が出ますね.
でも,これは反則かな?

おまけに(2')の導出(よく本に載っています):

(6)  I = ∫{-∞~+∞} exp(-t^2) dt

として

(7)  I^2 = ∫{-∞~+∞} exp(-t^2) dt ×∫{-∞~+∞} exp(-y^2) dy
      = ∫{-∞~+∞} dx∫{-∞~+∞} dy exp{-(x^2+y^2)}
      = ∫{r=0~+∞} ∫{θ=0~2π} exp(-r^2) r dθ dr
      = 2π ∫{r=0~+∞} exp(-r^2) r dr
      = π

から(2')が直ちにわかります.
(7)で2行目から3行目に移るところは,
(x,y) 座標から (r,θ) の極座標に変換しました.

vortexcore さんの書かれているように
> ややこしくて出来ません
の具体的内容を書かれた方が回答も書きやすいでしょう.

期待値を求める方法はご存知のようですから,あとは積分だけですね.
<x> と <Px> は本質的に

(1)  ∫{-∞~+∞} t exp(-t^2) dt

の計算ですね(t = q/√2).
これは t^2 = z とおけばすぐに計算ができます.
でも,Umada さんご指摘のように,奇関数の{-∞~+∞}積分ですから,
計算するまでもなく答はゼロです.
調和振動子は右に行ったり左に行ったりの繰り返しで,
対称性を...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qデルタ関数のポテンシャル

シュレーディンガーの式
[-(h^2/2m)(d^2/dx^2)+Vδ(x)]ψ(x)=Eψ(x)・・・★
の解のx=0での接続条件はどのように求めたらよいのでしょうか?

★の両辺を-εからεまで積分し、ε→0とすれば・・・、のような事をやれば、
ψ(+0)=ψ(-0)
ψ'(+0)-ψ'(-0)=αψ(0)
という感じになったと思うのですが、どうも上手くいきません。


1.∫[-ε→ε]d^2ψ/dx^2 dx =ψ'(+0)-ψ'(-0)となる理由
(結論を見る限り、d^2ψ/dx^2はx=0で(δ関数的に?)発散していますが、この場合にも微積分学の基本定理は成り立つのでしょうか?)

2.∫[-ε→ε]Eψ(x)dx=0となる理由
(要するに、ψがx=0で有限である理由です。ポテンシャルがδ関数で発散しているので、ψもx=0でおかしなことになっていない保証はない気がするので)

3.ψ(+0)=ψ(-0)となる理由
(もう一度何かを積分すれば導けた記憶はあるのですが)

の3つが分かれば、問題ないと思います。

シュレーディンガーの式
[-(h^2/2m)(d^2/dx^2)+Vδ(x)]ψ(x)=Eψ(x)・・・★
の解のx=0での接続条件はどのように求めたらよいのでしょうか?

★の両辺を-εからεまで積分し、ε→0とすれば・・・、のような事をやれば、
ψ(+0)=ψ(-0)
ψ'(+0)-ψ'(-0)=αψ(0)
という感じになったと思うのですが、どうも上手くいきません。


1.∫[-ε→ε]d^2ψ/dx^2 dx =ψ'(+0)-ψ'(-0)となる理由
(結論を見る限り、d^2ψ/dx^2はx=0で(δ関数的に?)発散していますが、この場合にも微積分学の基本定理は成り立つのでしょうか?)

2...続きを読む

Aベストアンサー

確かにeaternさんの疑問は誰もが感じる(べき)正しい疑問だと思います。つまりこういった異常なポテンシャルを持つ問題は取り扱いが難しいことが知られています。
私が学部でポテンシャルによる散乱問題を習った時には、問題を解く時の理論的なよりどころは連続の方程式だと習ったと覚えています。そのことは確かシッフの教科書にも議論があったと思います。(卒業の時に後輩にあげたので量子力学の教科書が手元にありませんので確認できませんが)

よって波動関数が連続である必要はまったく無いと思います。しかし大抵の教科書では簡単化のためといって、波動関数の連続性を”仮定”します。一般にはこういった異常なポテンシャル問題は量子力学的意味のある系かどうか自明でありませんから、取り合えず意味のある答えがあるかどうか計算してみようよというくらいの態度だと私は考えています。取り合えずその仮定を受け入れたします。

(1)φ(+0)=φ(-0)を仮定として受け入れる。

すると以下の事が導けます。

(2)∫dx d/dx(dφ/dx)=∫d(dφ/dx)=[dφ/dx]_{-0→+0}
=dφ(+0)/dx-dφ(-0)/dx


(3)一方でd/dx(dφ/dx)=(αδ(x)-E)φですから、0を含む微小領域[-ε,+ε]で積分してεをゼロにすると

∫dx(αδ(x)-E)φ=αφ(0) -Eφ(0)*2ε=αφ(0)

なので

dφ(+0)/dx-dφ(-0)/dx=αφ(0)

が導けます(Eも定数としましたが、これも必要ないかもしれません)。

(3)を際に波動関数が[-ε,+ε]で連続だという事を仮定したのでエネルギーに比例した項の積分は積分領域の幅×原点での波動関数で近似しましたが、結局積分領域がゼロの極限をとるとゼロです。波動関数が連続であれば微分が飛んでいても積分に何の問題もありません。
これは積分領域をx<0, x>0に分けて考えれば直感的にも納得いくでしょう。関数が滑らかでないところで積分領域を分けて考えると積分は二つの領域の和です。

最終的には量子力学で使う積分、ひいては物理で使う積分はるベールグ積分の意味で定義されていると見なすべきでしょう。私は難しい事は知りませんが、とりあえずは関数が折れ線や、さらには飛びがあっても、それが一点で起こっている限り積分測度はゼロなので大丈夫だと思います。
一点の効果は積分に利きません。もしも一点から有限の値があるいう風に積分が定義されているなら、任意の線分に実数は無限に存在するので積分は全て発散してしまいます。

(2)を導く際に、dφ/dxが連続でないと言っておきながら、更にその微分を積分するのはOKかという疑問があるでしょう。一階微分の飛びは原点の一点に限られますから、その二回微分も原点では定義されていません。しかし二回微分の値など知らなくても、やはり積分領域をx<0、x>0の二つにわけて積分すれば問題ないことが理解されると思います。なぜならやはり積分測度がゼロだからです。

と大体数学的にはかなりいい加減説明ですが、物理をやる上ではこれくらいの理解で良いのではないでしょうか。気になる場合にはるベールグ積分を勉強することになるんでしょう(数学を勉強したからといって物理の全てを厳密な方法で理解できるかどうかは疑問です)。


最後に(1)の仮定ですが、これは必ずしも必要ではありません。なぜなら量子力学の要請は確立密度

j=-i(φ*∂φ-φ∂φ*)     (∂=d/dx)

が連続であればよいことだけですから。異常なポテンシャルを解析する方法にはいくつかあるでしょうが、最も物理的なのは有限なポテンシャルの極限としてそれらを理解する事です。δ(x)ポテンシャルの場合ならそれは[-ε/2,+ε/2
で高さεを持つ階段型ポテンシャルのε→0極限として理解するとか。こういう理解では通常波動関数は連続で微分が飛びます。

確かにeaternさんの疑問は誰もが感じる(べき)正しい疑問だと思います。つまりこういった異常なポテンシャルを持つ問題は取り扱いが難しいことが知られています。
私が学部でポテンシャルによる散乱問題を習った時には、問題を解く時の理論的なよりどころは連続の方程式だと習ったと覚えています。そのことは確かシッフの教科書にも議論があったと思います。(卒業の時に後輩にあげたので量子力学の教科書が手元にありませんので確認できませんが)

よって波動関数が連続である必要はまったく無いと思います...続きを読む

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む

Q電子のエネルギーについて

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?

( i)ポテンシャルが存在せず、Eを運動エネルギーと考えた場合・・・
E = hν = 1/2 mv^2
従って、
p = h / λ = hν / v = 1/2 mv ??
これは運動量の定義と矛盾します。

(ii)ポテンシャルが存在せず、Eを運動エネルギー+静止エネルギーと考えた場合(電子の速度は光速に比べて十分遅いので)・・・
E = mc^2 + 1/2 mv^2 ~ mc^2 = hν
従って、
p = h / λ = hν / v = mc^2 / v ??
これも運動量の定義と矛盾します。

つまり、電子のように遅い粒子では、E = hν と p = h / λを同時に満たすことができないように思えるのです。

数多くある量子力学の本でも逃げている部分であり、難解な質問かとは思いますが、ご存知の方がいらっしゃればご回答お願いします。

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレ...続きを読む

Aベストアンサー

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度により表されます。群速度Vgは、角速度ωを波数ベクトルの大きさkで微分したものです。つまり、Vg=dω/dk となります。エネルギーと運動量は、ωとkを使うと、E=h'ω、p=h'k となりますから(h'=h/2π)、Vg=dE/dp となります。非相対性理論の範囲では、E=p^2/2m ですから、Vg=vとなります。相対性理論の範囲では、E^2=p^2c^2+m^2c^4ですから、これもVg=vとなります。

 それでは、質問者様の質問に回答します。
1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

 電子のエネルギーは、静止質量エネルギーを含んだものです。シュレーディンガー方程式のエネルギーは、ご指摘のとおり、静止質量エネルギーは含んでおりません。このため、相対論的量子力学で扱うエネルギーとシュレーディンガー方程式で扱うエネルギーとでは、静止質量エネルギーの分だけ違いがあるということになります。これは(ディラックによれば)、物理的に影響のない項目です。なぜなら、ハミルトニアンは、実の定数分の不定さがあるからです。

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?
 
 既に上で述べたように、λν=v ではなく、E=hν と p=h/λから位相速度が決まります。ド・ブロイはなぜこの式を適用することができると考えたのか、については、ド・ブロイ自身の論文は見ていませんが、ディラックによれば、相対論的に不変な性質から出発してこの考えに至ったようです。つまり、エネルギーと運動量は4次元ベクトル(E/c,p1,p2,p3)を成します。波数ベクトルについても、(ω/c,k1,k2,k3)は4次元ベクトルとなります。どちらも4次元ベクトルであることから、エネルギー運動量を波で表すということは、光だけに限定されるものではなく、ほかの物質であっても成り立つものと考えた訳です。

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度...続きを読む

Qエルミート演算子

運動エネルギー演算子-(hバー)^2(∇)^2/2mがエルミート演算子であることを証明したくて、
エルミート演算子の定義はわかっているのですが、
どのように証明を進めていっていいのかわかりません。
どなたか具体的に教授してもらえないでしょうか?

Aベストアンサー

#1さんの証明では、運動量 P がエルミート演算子である事実を使って証明してありますが、何故 P がエルミート演算子であるかの証明はしてありませんので、不完全な証明と言えます。以下で完全な証明をするための手順を書き連ねておきます。

キーワードは部分積分です。

先ずエルミート共役の意味を理解して下さい。これは例えば、座標表示での2つの波動関数を使って、その座標に関する積分で表現されていますね。

運動エネルギー演算子は微分演算子ですから、運動エネルギー演算子のエルミート共役を表す表現のなかで、ある関数を2回微分した関数の積分に成っていますね。そこで、この表現に部分積分を実行して下さい。

エルミート演算子はヒルベルト空間に属する波動関数に作用する演算子として定義されていますから、その波動関数は座標の絶対値が無限大のところでゼロに成っていますね。従ってその部分積分の上限と下限のところからくる寄与はゼロに成っていますね。

そこで、この結果を眺めると、それが元の運動エネルギー演算子と完全に同じになり、従って、エルミート演算子の定義を満たしていることが確認できます。

この手順で、自分で手を動かして、証明して下さい。

===
蛇足:
この証明法から、次の重要な事実が判ります。もし波動関数が積分領域の上限や下限でゼロでない関数まで含めて定義された関数空間の要素であり、従って、ヒルベルト空間に属していない関数だったとすると、その拡張された関数空間の中では運動エネルギー演算子はエルミート演算子ではなくなります。

多分、貴方ももう教わったと思いますが、エルミート演算子はヒルベルト空間内では、必ず実数の固有値を持ちます。ですから、ヒルベルト空間内では、運動エネルギーの値は必ず実数になります。ところが、同じ運動エネルギー演算子でも、それが上に述べたような、ヒルベルト空間よりも拡張された関数空間の関数に作用すると、最早エルミート演算子ではないので、複素数の固有値を持つことができるようになります。

多分貴方は今量子力学の入門編を習っている段階だと思いますので、一先ず、波動関数はヒルベルト空間に属するものとして、従って、エネルギーの値は実数であるものとして理解しておいて下さい。そしてその理解で、いろいろな練習問題を解いて量子力学に慣れ親しんで下さい。

しかし、貴方が量子力学に大分上達した後で、もし将来、まだ未解決な物理学の基本問題の一つである、「時間の向きの対称性の破れ」の問題(即ち、何故この世の中に過去と未来の区別があるのかという問題)に興味を持つことがあったら、その段階で、「波動関数を果たしてヒルベルト空間だけに限ってよいのか」という問題に戻ってきて、貴方のここでの質問を思い出して下さい。もしかしたら、貴方の寄与によって物理学が進歩するかも知れませんから。

#1さんの証明では、運動量 P がエルミート演算子である事実を使って証明してありますが、何故 P がエルミート演算子であるかの証明はしてありませんので、不完全な証明と言えます。以下で完全な証明をするための手順を書き連ねておきます。

キーワードは部分積分です。

先ずエルミート共役の意味を理解して下さい。これは例えば、座標表示での2つの波動関数を使って、その座標に関する積分で表現されていますね。

運動エネルギー演算子は微分演算子ですから、運動エネルギー演算子のエルミート共...続きを読む

Q固有値が複素数のときの固有ベクトルの求め方

固有値が複素数のときの固有ベクトルの求め方

( -7 -5 )
( 13 9 )

の2x2行列で固有値を求めると 1±2i になると思いますが

Av = λv の形で固有ベクトルを求めようとすると

( -8 + 2i ) x - 5 y = 0
13 x + ( 8 + 2i ) y = 0

の形になり、その先を求めることが出来ません。
何度も計算したので最後の2つの式は間違いは無いと思うのですが、
固有値が複素数の時は、Av = λv の方法で計算することは出来ないということでしょうか?
またどのように計算できるのでしょうか?
お知恵をお貸しいただければ幸いです。

Aベストアンサー

固有値は1±iになるかと…

そこから先の計算は普通に実数の時と同じ方法で計算できます.

Q原子核の位置での電子の存在確率密度

原子核の位置での電子の存在確率密度って波動関数Ψ(r,θ,φ)を二乗してr=0を代入したときと、動径分布関数D(r)にr=0を代入したときとで答えが違いますよね。
例えば水素原子1s軌道で
Ψ(r,θ,φ)=1/sqrt(pi)*(1/a)^(3/2)*exp(-r/a)
D(r)=4r^2*(1/a)^3*exp(-2*r/a)
前者で1/(pi*a^3)、後者で0になると思います。この差はなぜ生じるのですか?ちなみにaはボーア半径です。

Aベストアンサー

なにか大変な勘違いをされているようですね。
波動関数式と動径分布関数式は、同じ意味のものを別々の関数で表したのもではありません。全く表している事が違っています。したがって、同じ値になろうが、なかろうが、比べる意味そのものが根本的にありませんよ。

下記サイトをご参照下さい。
http://www.materials.sci.osaka-cu.ac.jp/materials2002/Lec_others/dorbital.html

動径分布関数とは、原子核を中心にして半径r の距離に電子を見出す確率,つまり,今回のような1s軌道では波動関数内にθとφを含んでいないので、半径r の球の表面での「確率密度」であり、この値が最大(極大)になる距離r は,D(r) をr で微分してゼロになる所
dD(r)/dr = ( const ) × r ( 1 - r / a ) exp ( -2r / a ) = 0
より、
r= a

つまり、aはボーア半径ですね。つまり、ボーア半径のあたりで,電子の動径分布が最大になりますよ。

式名称に惑わされてはいけません。「何のためにその式が出てきたのか」を考えて下さい。

S = 4πr^2 は球の表面積ですよね。何故それに波動関数の自乗を掛けあわせたものが原子核を中心にして半径r の距離に電子を見出す確率,つまり,半径r の球の表面での確率密度なるのかというと、先ほどの1s軌道の波動関数がは,実際にはθとφを変数として含んでいないからrに対して一様な球状だとしたわけです。

他の電子軌道を考察する場合には、そうはいきませんね。

本当に詳しく知りたいのであれば、以下のサイトをざっと読んでみて下さい。くわしく、丁寧に説明されています。(QMII-8.pdfは無いようです)
http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-3.pdf
http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-4.pdf
http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-6.pdf
http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-7.pdf

http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-9.pdf
http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-10.pdf
http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-11.pdf
http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-12.pdf
http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-13.pdf
http://www.phys.konan-u.ac.jp/~yamasaki/Quantum_Mechanics_II_files/QMII-14.pdf

頑張ってくださいね。

なにか大変な勘違いをされているようですね。
波動関数式と動径分布関数式は、同じ意味のものを別々の関数で表したのもではありません。全く表している事が違っています。したがって、同じ値になろうが、なかろうが、比べる意味そのものが根本的にありませんよ。

下記サイトをご参照下さい。
http://www.materials.sci.osaka-cu.ac.jp/materials2002/Lec_others/dorbital.html

動径分布関数とは、原子核を中心にして半径r の距離に電子を見出す確率,つまり,今回のような1s軌道では波動関数内にθとφを含んでい...続きを読む

Q波数の意味と波数ベクトル

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m]の波の波数はk1=1/100[m]となり、これは「100m中に1個の波がある」という意味であり、λ2=2[m]の波の波数はk2=1/2[m]となり、「2m中に1個の波がある」という意味で、いずれもk<1なのはどれくらいの割合で波が1つあるのかという事を表してるのだと思っています。k2は2[m]中に1つの波があるので、仮にその波を100[m]にも渡って観察すれば、その中に50個も波が存在する。一方、k1は100[m]内に1個しか波が存在しない。よってk2の波の方が波の数が多い波である。以上が波の「数」なのに次元が長さの逆数を取る理由だと解釈してるのですが、合っているでしょうか?

また、(正否は分かりませんが)波数kを以上のように考えているのですが、波数ベクトルという概念の理解に行き詰まっています。個数であり、長さの逆数を取る量がベクトル量で向きを持つというイメージが掴めません。本にはkx、ky、kzと矢印だけはよく見かけるのですが、その矢印がどこを基準(始点)としてどこへ向いているのか(終点はどこなのか)が描かれていないので分かりません。波数ベクトルとはどういう方向を向いていて、それはどういう意味なのですか?一応、自分なりに描いてみたのですが下の図で合っているでしょうか?(1波長置きに存在するyz平面に平行な面に直交するベクトルです)

私の波数の考えが合っているか、波数ベクトルが図のようで合っているかどうか、波数ベクトルとは何かをどなたか教えて欲しいです。

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m...続きを読む

Aベストアンサー

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このとき、x方向の波数は1、y方向の波数も1、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,1,0)
のように表すことができます。

さらに発展して考えたとき、x方向とy方向の波数が違っていてもいいですよね(下のリンクのような)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2B0.3*y^2%29%29
こうなるとx方向の波数は1、y方向の波数は0.3、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,0.3,0)
のように表すことができます。

このように波数ベクトルは、現実の波をx,y,z成分で分けたときのそれぞれの波長(λx,λy,λz)から求めたものなので、あくまで波がどういう形になるのかしか分かりません。
なので波の始点や終点という概念はありません。
この波数ベクトルの利点は、たとえば現実空間で
y=sin(1*x)+sin(2*x)+sin(3*x)+sin(4*x)+・・・+sin((n-1)*x)+sin(n*x)
を考えるととても複雑なグラフとなりますが、波数空間ではkx=1,2,・・・.nの点の集合として表すことができます。(よくいわれるスペクトル表示的なものです)



波数ベクトルを現実世界の何かとして考えることはあまりないので割り切ってしまった方が楽かもしれません。

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このと...続きを読む


人気Q&Aランキング

価格.com 格安SIM 料金比較