人に聞けない痔の悩み、これでスッキリ >>

レーザーの偏光方向について、励起光の偏光方向と発振光(レーザー光)の偏光方向には関係がありますか。
たとえば、励起光が無偏光の場合、発振光(レーザー光)の偏光はどのようになりますか。
詳しい方ご教示お願いします。

A 回答 (1件)

レーザ光の偏光は、レーザそのものの構造によって決まりますので、励起光の偏光とは無関係になります。



例えば通常の劈開面ミラーなどでファブリ・ペロ共振器を形成させたダブルへテロ半導体レーザの場合、TEモードで発振します。これは、劈開面ミラーにおける反射率がTMよりTEの方が大きく、従って、その分TE成分の発振閾値が低いことによります。なお、TEとTMで反射率が異なるのは、フレネル反射の原理で説明できますが、活性層がGaAsで真空中に光放出する半導体レーザの場合、TEの反射率はTMのそれ以上の値を取ることが理論計算で示されております。

ですから、仮に無偏光やTM偏光で光励起しても、このレーザはTEモードで発振すると考えられます。

この回答への補足

BOMBARDMENT様
早速のご回答ありがとうございます。
1つだけ疑問があります。発振閾値の低い方の偏光方向の光が先に発振してしまうというお話ですが、その場合残った方の偏光方向の光はどうなるのでしょうか?ASEとして放出されていくことになるのでしょうか。
またこれに関連して、発振器ではなくて増幅器の場合、無偏光の光で結晶を励起した場合に、増幅器への入射光の偏光方向と同じ偏光成分だけが増幅されるのでしょうか、それとも他の方向の偏光成分も増幅に寄与するのでしょうか、よろしければご回答いただければ幸いです。

補足日時:2011/06/24 10:45
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QTM偏光とTE偏光

TM偏光とTE偏光/s偏光とp偏光・・・混乱しています。

s偏光とp偏光はなんとなくわかりました。
s偏光:入射面に垂直な偏光方向
p偏光:入射面に平行な偏光方向

以前にあった質問(http://oshiete1.goo.ne.jp/kotaeru.php3?q=152029)で
>偏光の方向を示す言葉として、TE(Transverse Electric field)、
>TM(Transverse Macnetic field)という言葉も使われます。
>TEは電場が横方向なので「水平偏光」、TMは磁場が横方向なので「垂直偏光」となります。
という回答があったのですが、これも入射面に対して横方向(つまり平行?)なのでしょうか?
とすると、s偏光=TM偏光(p偏光=TE偏光)といえるのですか?
そもそもTM偏光とTE偏光/s偏光とp偏光に相関はあるのですか??

なぜ混乱し始めたかというと、別の観点からの説明で、TM偏光とTE偏光について
線状の格子(もしくは溝)への入射では、
格子に垂直な偏光:TM偏光
格子に平行な偏光:TE偏光
と書いてあるものがありました。
二つの説明が正しいとすると、格子が入射面に垂直方向にある場合のp偏光は、TM偏光なのかTE偏光なのか・・・???

とくにTM偏光とTE偏光というのはどういう偏光を指すのかが知りたいです。
まとまらずすみませんが、詳しい方教えてください。

TM偏光とTE偏光/s偏光とp偏光・・・混乱しています。

s偏光とp偏光はなんとなくわかりました。
s偏光:入射面に垂直な偏光方向
p偏光:入射面に平行な偏光方向

以前にあった質問(http://oshiete1.goo.ne.jp/kotaeru.php3?q=152029)で
>偏光の方向を示す言葉として、TE(Transverse Electric field)、
>TM(Transverse Macnetic field)という言葉も使われます。
>TEは電場が横方向なので「水平偏光」、TMは磁場が横方向なので「垂直偏光」となります。
という回答があったのですが、これ...続きを読む

Aベストアンサー

ご当人が説明いたします。

通常光の偏光方向は電場の方向を指します。
s偏光というと電場が入射面に垂直というわけです。

さて、TE,TMと言う場合は「何に対して横なのか」が問題となります。
格子を取り上げた場合は、格子の方向に横に並ぶ方向が電波方向=TE偏光となります。
これがわかれば直交する方向はTMになりますね。
(transverseに対する言葉はlongitudinalになります)

つまり何かの基準となる方向に対してTEとかTMとか言うわけです。

一方s,p偏光は「入射面」に対して言うことが決まっています。

では両者の関係はというとTE,TMを入射面に対して使うことはありません。(理由はよくわかりませんが必要性がないのでしょう)

で、s,p偏光とTE,TMでは決定的な違いがあります。
s,p偏光はある境界面があり、「斜め方向に入射」するときしかs,p偏光という区分はありません。
なぜならば、境界面に垂直であればそもそも入射面が定義できないからです。

一方TE,TMは、たとえば格子を基準に取れば入射角によって区別できないと言うことはありません。
(強いて言うと、格子の方向と光の進行方向が一致するとそういう状態になりますが、普通そういう状態はありませんよね)

だから、たとえば格子面に光が入射するとき、垂直入射であればTE,TM偏光などと言うことは出来ますが、このときにはs,p偏光という区別はありません。

以上で両者必要に応じて使い分けている訳です。

ご当人が説明いたします。

通常光の偏光方向は電場の方向を指します。
s偏光というと電場が入射面に垂直というわけです。

さて、TE,TMと言う場合は「何に対して横なのか」が問題となります。
格子を取り上げた場合は、格子の方向に横に並ぶ方向が電波方向=TE偏光となります。
これがわかれば直交する方向はTMになりますね。
(transverseに対する言葉はlongitudinalになります)

つまり何かの基準となる方向に対してTEとかTMとか言うわけです。

一方s,p偏光は「入射面」に対し...続きを読む

Q偏光レーザー光のミラー反射のメカニズムについて

 直線偏光を(Al)ミラーで反射すると楕円偏光になる物理的なメカニズムがつかめません。
 理論の式では、位相変化が起こる理由は理解できるのですが、直線偏光が入射したとき、(Al)ミラー中でおこる電子・原子の振る舞いについてのメカニズムの事です。
 どのように位相が変わるのでしょうか?
 
 実際に、偏光レーザー光を使った測定をしていて、この様な問題に会いました。レーザー系の文献を調べてみると、ただ、ミラーの反射により直線偏光が楕円偏光になるという記述しか載ってなかったり、理論式しか載っていません。

 この物理的なメカニズムを解決できる文献やweb等があれば教えて下さい。当然、皆様の知識・経験等の方が有難いです。

 皆様はどのように認知されているのでしょうか?

 よろしくお願い致します。

Aベストアンサー

基本的に、ミラーに入射する光のミラーを基準とした入射方向が決まると、反射方向も決まりますね。
この入射と反射の方向の両方を含む平面を考えてあげます。
この平面に対して垂直な偏光方向をs偏光、平行な方向でかつ光の進行方向に垂直な偏光方向をp偏光といいます。
直線偏光が楕円になってしまうのは、このs偏光とp偏光が反射するときの位相差が同一でないということです。
だからアルミミラーに対してs又はp偏光のみ光を入射するようにすれば、偏光方向は変化しません。

ここまではよろしいですね?

さて、s偏光とp偏光での反射時の位相差を考える場合、基本的に反射とはどのようにして行われているのかを考える必要があります。
反射は基本的に、アルミミラー表面の価電子帯が入ってきた電場により振動します。電子が振動するということはまた光を再放出するということを意味しています。
このとき、一つの電子しかなければ、それはいろんな方向に光は出て行くでしょう。しかしたくさんの電子が集まると、互いの干渉効果で特定の方向のみ反射します。
(計算は入射光のの位相から順番に同一位相になる点を追いかけると入射角=反射角となることが判ります)

s偏光の場合は電場方向はアルミミラーの表面に平行ですから、反射光は同じ電場方向に振動した光となり簡単です。
しかしp偏光の場合は入射光の電場方向ではなく、異なる電場方向で反射しないといけません。
偏光方向は必ず光の進行方向に対して垂直ですが(注:異方性のある誘電体物質中を除く)、作図するとわかるように入射光の電場方向と出射光の電場方向は異なるわけです。

この違いのためs偏光とp偏光の位相関係の計算をすると、位相の値、反射係数に違いが生じます。
これが微視的にみた定性的な説明となります。

実際に計算してみるのであれば、マクロ的にはマクスウェル方程式を解けば求まりますので、光の反射をマクスウェル方程式で解いている本があれば計算の仕方は出ていると思います。
ミクロに計算したいのであれば、通常双極子モーメントの計算から求めることが一般的ですね。
具体的な教科書となるとすぐにはちょっと思いつきません。

では。

基本的に、ミラーに入射する光のミラーを基準とした入射方向が決まると、反射方向も決まりますね。
この入射と反射の方向の両方を含む平面を考えてあげます。
この平面に対して垂直な偏光方向をs偏光、平行な方向でかつ光の進行方向に垂直な偏光方向をp偏光といいます。
直線偏光が楕円になってしまうのは、このs偏光とp偏光が反射するときの位相差が同一でないということです。
だからアルミミラーに対してs又はp偏光のみ光を入射するようにすれば、偏光方向は変化しません。

ここまではよろしいで...続きを読む

Q1/4波長板ってなんですか

偏光板と1/4波長板を組み合わせることによって
円偏光するらしいいのですが、その仕組みがわかりません。是非、教えてください。

Aベストアンサー

1/4波長板については知っておられるのでしょうか?

1/4波長板そのものが直線偏光を円偏光にする機能を持っています。その前の偏光板は1/4波長板に入射するための直線偏光を取り出すために置かれています。

1/4波長板について。

1/4波長板は非等方性結晶でできています。結晶軸(いわゆるC軸)の方向が、偏光方向と45度の角度を持つように入射します。このとき、入射光は結晶軸の方向とそれに垂直な方向に等しい振幅を持ち、また各方向の成分の位相はそろっています。入射面上での2方向の電場は、簡単に次のように書けます。

Ex = A cos(wt)
Ey = A cos(wt)

結晶内部では、それぞれの方向がことなる屈折率をもつため、各方向の光波の伝搬速度がことなります。それによる光学距離のずれが、波長の4分の1の大きさになるような(位相がπ/2ずれるような)厚さにしておけば、出てくる光は円偏光になります。出射面上での電場Ex,Eyはこうなります。

Ex = A cos(wt+φ)
Ey = A cos(wt+(φ+π/2)) = A sin(wt+φ)

すなわち、(Ex,Ey)で表される電場ベクトルは回転しています。

といった感じです。どうでしょう。

1/4波長板については知っておられるのでしょうか?

1/4波長板そのものが直線偏光を円偏光にする機能を持っています。その前の偏光板は1/4波長板に入射するための直線偏光を取り出すために置かれています。

1/4波長板について。

1/4波長板は非等方性結晶でできています。結晶軸(いわゆるC軸)の方向が、偏光方向と45度の角度を持つように入射します。このとき、入射光は結晶軸の方向とそれに垂直な方向に等しい振幅を持ち、また各方向の成分の位相はそろっています。入射面上での2方...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qレーザーの強さ

私は高校生で、今日某大学の体験学習をしてきました。
そこでレーザーを使って(YAGレーザー)銅やステンレスに穴を開けるのを見学しました。
そこで質問なのですが、この世で一番強いレーザーってなんですか?
またレーザーの出力を上げるにはどうしたらいいのでしょうか?
波長とか関係あるのでしょうか?

Aベストアンサー

1.レーザーの強さ? どんなレーザー?
 ○ 普通は出力(単位時間当りの放射エネルギー 単位は、ワット W)で比べます。
 これは、連続光でもパルス(瞬間的に出る)光でも同じことですが、パルスの場合は、パルスの長さで割り算します。
 ○ よく混乱するのが、強度(または集光強度)です。
 これは、レンズや鏡で絞ってできる光の強さで、単位面積を単位時間に通過する光のエネルギーで、単位は W/m^2 や W/cm^2(習慣でW/cm^2の方が良く使われます)。
 ○ 現在、最高出力は、PW(ペタワット)=10^15 Wを越しています。このクラスのレーザーは、アメリカ、日本、フランス、イギリスにあります。 ついでに言うと、最高強度は、10^20 W/cm^2に近くなっています。この強度ではウランのような重たい原子でも瞬間的にバラバラになり、電子のエネルギーは10MeVを越すので(加速器を使わなくても)原子核反応を起すことが出来ます。
 ○ レーザーの種類は、ガラスレーザーかチタン。サファイアレーザーです。サファイアレーザーの方が小型にできます。

2. どうやって出力をあげるか?
 ○ No.1の方の答えも合っているのですが、それだけではPWレーザーは作れません。とてつもなく大きな直径(100m以上)のレーザーが必要になってしまうのです。
 ○ 直径を大きくする変りに、時間を延ばすのです。(詳しく言うと、時間と供に波長が短くなるような)長いパルスを作って、そのエネルギーを増幅した(増やした)後で、時間的に1万倍から10万倍
くらい圧縮して短いパルスにします。出力はエネルギーを時間で割ったものであることを、思い出して下さい。この時間的に圧縮する方法では、レーザーは小型になります。
 ○ この方法で作られるパルスの長さ(短さ)は、大体30fs(フェムト秒)=100兆分の3秒で、光パルスは10ミクロン位の厚さでとんで行きます。

3. 波長との関係?
 現在のレーザー技術が係る範囲ではほとんど関係ありません。関係あるのは光子の密度です。

1.レーザーの強さ? どんなレーザー?
 ○ 普通は出力(単位時間当りの放射エネルギー 単位は、ワット W)で比べます。
 これは、連続光でもパルス(瞬間的に出る)光でも同じことですが、パルスの場合は、パルスの長さで割り算します。
 ○ よく混乱するのが、強度(または集光強度)です。
 これは、レンズや鏡で絞ってできる光の強さで、単位面積を単位時間に通過する光のエネルギーで、単位は W/m^2 や W/cm^2(習慣でW/cm^2の方が良く使われます)。
 ○ 現在、最高出力は、PW(ペタワット)...続きを読む

Q偏光板の回転角と透過光強度

半導体レーザーと検出器の間に1枚の偏光板を置き、偏光板の回転角φを変えて透過光強度を測りました。

検出器は電圧計に接続し、回転角φの時の電圧をV(φ)としました。
すると、
φとV(φ)/V(0°)のグラフがコサインの曲線に、
V(φ)/V(0°)と(cosφ)^2の値がほぼ等しくなりました。

これはどうしてでしょうか。どなたか教えてください。

Aベストアンサー

直線偏光の偏光板を通過すると、偏光板の透過軸に沿った成分が通過します。
レーザーからの光の偏光面と偏光板のなす角度をφとすると、
透過軸成分はEcos(φ)になります。

検出器の出力は普通光のエネルギーつまり電界の2乗に比例しますから
検出信号Vは
V=k(Ecos(φ))^2
となりますよね。

QFPレーザーの縦モードに関して

FPレーザーが複数の縦モードを発振するのはなぜでしょうか。
共振器による離散的なスペクトルは理解できるのですが、そもそも増幅される光自体にスペクトルの広がりといったものはあるのでしょうか。
また、もしあるならばスペクトルの広がりの原因とは何でしょうか。
私は、発光原子の速度や移動方向がガウス分布しているがため、ドップラー効果により発振スペクトルが広がって見えるのではないかと考えております。
もしくは、誘導放出が起こるエネルギーhvに広がりがあるのかと思っております(表現がよくわららず、すみません)。
参考文献だけでもいいので、教えていただけませんでしょうか。おねがいいたします。

Aベストアンサー

>FPレーザーが複数の縦モードを発振するのはなぜでしょうか。
FPレーザとはFP型半導体レーザのことをいいますが、FPでなくても半導体レーザは複数の縦モードで発振しますよ。とはいえそのモード数は少ないですが。

単純に言えばレーザ媒質の利得帯幅の中に共振器の共振する波長がいくつあるのかという問題です。距離の長い共振器ほどモード間の波長間隔は短くなるので当然縦モード数は増えます。これは別に半導体に限らずなんでもそうです。He-Neレーザも共振器長が短い物は2本程度しかモードがないけど長くなると複数になります。

スペクトルの広がりを気にされているのですが、利得帯幅のことを指しているのでしょうか。であれば様々な原因があります。大きくはご質問にあるようなドップラー広がりのような不均一広がりによりものもあるし、繊維準位の広がりが原因の均一広がりに分けられます。

参考文献としては、
レーザー物理入門: 霜田 光一
光エレクトロニクスの基礎:A.Yariv
あたりに基本的なことはかかれているでしょう。
古典的な説明ですけど、
Lasers: A. E. Siegman
あたりは詳しいです。

>FPレーザーが複数の縦モードを発振するのはなぜでしょうか。
FPレーザとはFP型半導体レーザのことをいいますが、FPでなくても半導体レーザは複数の縦モードで発振しますよ。とはいえそのモード数は少ないですが。

単純に言えばレーザ媒質の利得帯幅の中に共振器の共振する波長がいくつあるのかという問題です。距離の長い共振器ほどモード間の波長間隔は短くなるので当然縦モード数は増えます。これは別に半導体に限らずなんでもそうです。He-Neレーザも共振器長が短い物は2本程度しかモードがない...続きを読む

Q波数の意味と波数ベクトル

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m]の波の波数はk1=1/100[m]となり、これは「100m中に1個の波がある」という意味であり、λ2=2[m]の波の波数はk2=1/2[m]となり、「2m中に1個の波がある」という意味で、いずれもk<1なのはどれくらいの割合で波が1つあるのかという事を表してるのだと思っています。k2は2[m]中に1つの波があるので、仮にその波を100[m]にも渡って観察すれば、その中に50個も波が存在する。一方、k1は100[m]内に1個しか波が存在しない。よってk2の波の方が波の数が多い波である。以上が波の「数」なのに次元が長さの逆数を取る理由だと解釈してるのですが、合っているでしょうか?

また、(正否は分かりませんが)波数kを以上のように考えているのですが、波数ベクトルという概念の理解に行き詰まっています。個数であり、長さの逆数を取る量がベクトル量で向きを持つというイメージが掴めません。本にはkx、ky、kzと矢印だけはよく見かけるのですが、その矢印がどこを基準(始点)としてどこへ向いているのか(終点はどこなのか)が描かれていないので分かりません。波数ベクトルとはどういう方向を向いていて、それはどういう意味なのですか?一応、自分なりに描いてみたのですが下の図で合っているでしょうか?(1波長置きに存在するyz平面に平行な面に直交するベクトルです)

私の波数の考えが合っているか、波数ベクトルが図のようで合っているかどうか、波数ベクトルとは何かをどなたか教えて欲しいです。

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m...続きを読む

Aベストアンサー

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このとき、x方向の波数は1、y方向の波数も1、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,1,0)
のように表すことができます。

さらに発展して考えたとき、x方向とy方向の波数が違っていてもいいですよね(下のリンクのような)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2B0.3*y^2%29%29
こうなるとx方向の波数は1、y方向の波数は0.3、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,0.3,0)
のように表すことができます。

このように波数ベクトルは、現実の波をx,y,z成分で分けたときのそれぞれの波長(λx,λy,λz)から求めたものなので、あくまで波がどういう形になるのかしか分かりません。
なので波の始点や終点という概念はありません。
この波数ベクトルの利点は、たとえば現実空間で
y=sin(1*x)+sin(2*x)+sin(3*x)+sin(4*x)+・・・+sin((n-1)*x)+sin(n*x)
を考えるととても複雑なグラフとなりますが、波数空間ではkx=1,2,・・・.nの点の集合として表すことができます。(よくいわれるスペクトル表示的なものです)



波数ベクトルを現実世界の何かとして考えることはあまりないので割り切ってしまった方が楽かもしれません。

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このと...続きを読む

Q光の偏光状態って?

偏光状態っていう意味が分からないので教えてください。
一応いろいろなホームページとかで調べたのですが、
・ 光は進行方向に垂直な面に対し、様々な方向に振動している
・ 偏光というのは、ある特定方向への振動成分のことをいう
というので合ってるでしょうか?
で、分からないのは、直線偏光、垂直偏光、円偏光って何か?っていうことです。しかもこれらってどちらの状態かを同時に測定することはできないんですよね?
どうして測定できないんでしょう?

Aベストアンサー

まず、偏光とはなんぞやというのはNo.1の方が解答してくれてますね。
「光の偏光方向は?」と聞くと「電場」の振動方向を指します。

さて、光の偏光には、
「直線偏光」と「円偏光」(楕円偏光も含めて)の2つの偏光状態があると考えるとわかりやすいです。

直線偏光:光が進んでも偏光方向は変わらずに一定方向

円偏光(楕円偏光):偏光方向がくるくる回転している状態。
光は進んでいますのでもちろんある位置の一点を眺めるとくるくる回っているし、時間を止めて眺めると螺旋状になって見えるわけです。
この場合は右回りと左回りの2通りがあり得えて、右回り円偏光、左回り円偏光と呼びます。
楕円偏光は要するにこの円偏光で一回転するまでの強度が強いところと弱いところがあって楕円になっているということです。

「垂直偏光」という言葉は偏光状態を表すためには使われません。
これはおそらく何かの対象物に対して「水平」か「垂直」かを言いたいために使われたのでしょう。
何も該当する対象物か示されていない場合は、暗黙の了解として地面を基準とします。

偏光の方向を示す言葉として、TE(Transverse Electric field)、TM(Transverse Macnetic field)という言葉も使われます。
TEは電場が横方向なので「水平偏光」、TMは磁場が横方向なので「垂直偏光」となります。

特に物体に斜めに入射した光の偏光方向とその物体との関係を表すためにs偏光、p偏光ということばもあります。
s偏光:入射面に対して垂直な偏光方向
p偏光:入射面に対して水平な偏光方向

>しかもこれらってどちらの状態かを同時に測定することはできないんですよね
これは意味不明ですね。検光子、リターダーなどを用いればどんな偏光状態でも測定可能です。
特にこの偏光状態を調べる測定方法のことを「エリプソメトリー」と言います。これは薄膜の膜厚測定などいろいろな用途に使われています。

です。

まず、偏光とはなんぞやというのはNo.1の方が解答してくれてますね。
「光の偏光方向は?」と聞くと「電場」の振動方向を指します。

さて、光の偏光には、
「直線偏光」と「円偏光」(楕円偏光も含めて)の2つの偏光状態があると考えるとわかりやすいです。

直線偏光:光が進んでも偏光方向は変わらずに一定方向

円偏光(楕円偏光):偏光方向がくるくる回転している状態。
光は進んでいますのでもちろんある位置の一点を眺めるとくるくる回っているし、時間を止めて眺めると螺旋状になって見えるわ...続きを読む

Qレンズのフーリエ変換作用

レンズのフーリエ変換作用とは何かわかりやすく教えて下さい。
または、光学的な計算・解析でのフーリエ変換の意味を教えて下さい。
なお、私一応、数学のフーリエ変換をわかっているつもりです。
これをどうレンズに応用するのか、よくわからないのです。

Aベストアンサー

既にある程度の予備知識はお持ちのようなので、簡単に説明しますね。
詳しくは光学の割と基本的な本を参考にして下さい。

出発点はキルヒホッフの回折理論になります。
で、今光源があり、その先に開口がある場合、開口を通った像は上記理論の式で計算できます。
この像は要するに回折像になります。
さて、この像は、開口とスクリーンの距離によって、フレネル回折像(近いとき)、フランフォーファ回折像(遠いとき)と区別して計算します。
というのも、それによって近似の仕方が異なるためです。
さて、ここで、開口の後ろにレンズを入れてその焦点距離にスクリーンを置くと、レンズの働きにより丁度開口とスクリーンの距離を無限遠にしたときに相当します。
さて、こうやって立てたレンズによるこのフランフォーファ回折像の式を眺めると、丁度フーリエ変換式と同じ形になります。
(開口の関数をフーリエ変換した形になる)

これが基本となります。
おもしろいのはこの近似のなれの果てのような形で出てきたフーリエ変換による取り扱いが光学ではかなり本質的な意味をもちフーリエ光学として発展しました。
詳しい計算は省略しますが、開口による「フランフォーファ回折」の計算が載っていればその式を眺めてみることが出来ますよ。

既にある程度の予備知識はお持ちのようなので、簡単に説明しますね。
詳しくは光学の割と基本的な本を参考にして下さい。

出発点はキルヒホッフの回折理論になります。
で、今光源があり、その先に開口がある場合、開口を通った像は上記理論の式で計算できます。
この像は要するに回折像になります。
さて、この像は、開口とスクリーンの距離によって、フレネル回折像(近いとき)、フランフォーファ回折像(遠いとき)と区別して計算します。
というのも、それによって近似の仕方が異なるためです。
さ...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング