「夫を成功」へ導く妻の秘訣 座談会

以下の問題の解答が分からなく困っています。
どなたか助けてくださると嬉しいです。どの問題でもかまいません。
よろしくお願いします。

次の関数のn次導関数を求めよ
(1)y=√(1-x) (2)y=x^3・e^2x (3)y=1/(x^2-1)

A 回答 (1件)

(1) 1回1回微分していけば、法則性が分かる。


(2) 積のn回微分の公式をそのまま当てはめる。
(3) y = 1/2 * { 1/(x-1) - 1/(x+1) } だから、(1)と同様に。。。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qn次導関数の求め方

x^3・sinxのn次導関数を求めたいんですけどやり方がよくわかりません。これはライプニッツの公式をつかうらしいんですけど…帰納法じゃできないんですか?あとよろしければライプニッツを使った解法もおしえてもらえればうれしいです。よろしくお願いします。

Aベストアンサー

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法で証明しなくても一気に結果を求めることができます.

とはいうものの,実際この公式を適用するためには(*1)の右辺を見ればわかるように,個々の関数fとgについての1~n階微分までの情報はあらかじめ知っている必要があります.
この問題では個々の関数の微分は下のように
x^3 → 3x^2 → 6x→ 6 →0(以降すべて0)
sin(x) → cos(x) → -sin(x) → -cos(x) → …(以降繰り返し)---(*2)
簡単に求められます.しかもx^3の方は4次以上の微分は0なので,f=x^3, g=sin(x)とおくと(*1)の右辺でk=4以降の項は出てきません.すなわち,
D^(n)(x^3*sin(x))=x^3*D^(n)(sin(x))+C[n,1]*3x^2*D^(n-1)(sin(x))+C[n,2]*6x*D^(n-2)(sin(x))+C[n,3]*6*D^(n-3)(sin(x))
となります.sin(x)の微分は(*2)よりまとめて
D^(n)(sin(x))=sin(x-nπ/2)
とかけますので,
D^(n-1)(sin(x))=sin(x-nπ/2+π/2)=cos(x-nπ/2)
D^(n-2)(sin(x))=cos(x-nπ/2+π/2)=-sin(x-nπ/2)
・・・
のように変形しておけば,最終的に
D^(n)(x^3*sin(x))=x^3*sin(x-nπ/2)+3nx^2*cos(x-nπ/2)-3n(n-1)x*sin(x-nπ/2)-n(n-1)(n-2)*cos(x-nπ/2)
となることがわかります.

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法...続きを読む

Qn次導関数

f(x)=1/(1-x^2)のn次導関数を求めよ、という問題についてです。

f(x)=1/(1-x^2)=1/{(1+x)(1-x)}=1/2{1/(1+x)-1/(x-1)}
f'(x)=-1/2{1/(1+x)^2-1/(x-1)^2}
f''(x)=1/(1+x)^3-1/(x-1)^3
f'''(x)=-3{1/(1+x)^4-1/(x-1)^4}

以上の結果より、
f^n(x)=1/2*n!*(-1)^n*{1/(1+x)^(n+1)-1/(x-1)^(n+1)}

・・・以上のように解答しました。
結果はバツでした。どうすればよかったのでしょう?

Aベストアンサー

数学的帰納法を使えばよかったのではないですか?
単に微分をしていって,f^n(x)=1/2*n!*(-1)^n*{1/(1+x)^(n+1)-1/(x-1)^(n+1)}
でしたっていうのはダメだと思います.

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qy=x^xの導関数は?

y'=x*x^x-1

で結局もとに戻ってしまうのですがそんな
はずは無いと思うんです。

答えのみでよいので教えてください。
(できれば導き方を教えていただければ幸いです)

Aベストアンサー

高校生の方ですか?自然対数はlnで表現した方が自分は好きですが、見たことがないと思うのでlogを自然対数とします。
 まず、底の条件より
          x>0
で、このときy=x^xの両辺の自然対数をとります。
   logy=log(x^x)⇔logy=xlogx (∵対数の性質)
 次にこの式の両辺をxで微分します。
      y'/y=1*logx+x*(1/x)
⇔y'=y(logx+1)
⇔y'=x^x(logx+1) (∵y=x^xを代入)
この両辺の自然対数をとってから微分する解き方を
         「対数微分法」
といいます。ちょっと複雑な分数式やこのような普通には微分できない関数に有効です。
       

Qlim[n→∞](1-1/n)^n=1/e について

こんにちは

lim[n→∞](1+1/n)^n=e
が成り立つことは簡単に示せるのですが、
lim[n→∞](1-1/n)^n=1/e
となることの証明はどのようにすればいいのでしょうか?
ご存知の方がいらっしゃいましたらご回答よろしくお願いします。

Aベストアンサー

e=lim(1+t)^(1/t)   〔t→0〕
がeの定義なので、(t→+0でもt→-0でもOK)
-1/n=tとおきます。

n→∞のとき、t→-0なので、
(与式)=lim(1+t)^(-1/t)   〔t→-0〕

これを変形すると、
=lim{(1+t)^(1/t)}^-1   〔t→-0〕
=e^-1
=1/e

高校の範囲なら、この証明で大丈夫です。

Qy=x^(1/x) の 微分

y=x^(1/x) の微分を教えてください。
簡単な問題なのにすいません。

Aベストアンサー

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log|y|)'
= y' / y
= y' / { x^(1/x) }

となります。

(log|y|)' = { (1/x)log|x| }'
→y' / { x^(1/x) } = { (1/x)log|x| }'

この両辺に{ x^(1/x) }をかけると

y' = { x^(1/x) } × { (1/x)log|x| }'

となります。
なので{ (1/x)log|x| }'の計算をすればy'が求まります。
積の微分で解いてください。

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log...続きを読む

Qy=e^x^x 微分 問題

y=e^x^x 微分 問題

y=e^x^xを微分せよ
両辺に自然対数をとる
logy=loge^x^x=x^x(loge)
logy=x^x
両辺に自然対数をとる
log(logy)=logx^x=x(logx)
両辺を微分すると
(1/logy)・(1/y)・y'=logx+1
y'=(logx+1)(logy)・y
y'=(logx+1)・loge^x^x・e^x^x

回答があっているかどうか教えて頂けませんか?
また、間違っている場合は解き方を示して頂けないでしょうか?

以上、よろしくお願い致します。

Aベストアンサー

>y'=(logx+1)・loge^x^x・e^x^x

loge^x^x = x^x

とすべきでしょう。あとは合っていると思います。

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Qy=1/(2x-1)を微分する方法について質問します。

y=1/(2x-1)を微分する方法について質問します。

(g(x)/f(x))'=(g'(x)*f(x)-g(x)*f'(x))/(f(x))^2 を使わず解きたいのですが、なかなか答えが合いません。
途中式がおかしいのでしょうか?


途中式↓
y=1/(2x-1)=(2x-1)^(-1)
y'=(-1)(2x-1)^(-2)
y'=-(1/(2x-1)^2)

Aベストアンサー

括弧の中身が微分されていませんよ。(2x-1)を微分すると2が出てきます。

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)


人気Q&Aランキング